Self-Consistent SchrÖdinger–Poisson Simulations on Capacitance–Voltage Characteristics of Silicon Nanowire Gate-All-Around MOS Devices With Experimental Comparisons

2009 ◽  
Vol 56 (10) ◽  
pp. 2312-2318 ◽  
Author(s):  
S. K. Chin ◽  
Valeri Ligatchev ◽  
Subhash C. Rustagi ◽  
Hui Zhao ◽  
Ganesh S. Samudra ◽  
...  
Author(s):  
LiLung Lai ◽  
Nan Li ◽  
Qi Zhang ◽  
Tim Bao ◽  
Robert Newton

Abstract Owing to the advancing progress of electrical measurements using SEM (Scanning Electron Microscope) or AFM (Atomic Force Microscope) based nanoprober systems on nanoscale devices in the modern semiconductor laboratory, we already have the capability to apply DC sweep for quasi-static I-V (Current-Voltage), high speed pulsing waveform for the dynamic I-V, and AC imposed for C-V (Capacitance-Voltage) analysis to the MOS devices. The available frequency is up to 100MHz at the current techniques. The specification of pulsed falling/rising time is around 10-1ns and the measurable capacitance can be available down to 50aF, for the nano-dimension down to 14nm. The mechanisms of dynamic applications are somewhat deeper than quasi-static current-voltage analysis. Regarding the operation, it is complicated for pulsing function but much easy for C-V. The effective FA (Failure Analysis) applications include the detection of resistive gate and analysis for abnormal channel doping issue.


1999 ◽  
Vol 592 ◽  
Author(s):  
C. Raynaud ◽  
J.L. Autran ◽  
P. Masson ◽  
M. Bidaud ◽  
A. Poncet

ABSTRACTThe one-dimensional Schridinger and Poisson equations have been numerically solved in metal-oxide-semiconductor devices using a three-point finite difference scheme with a non-uniform mesh size. The capacitance-voltage characteristic of the structure has been calculated via this self-consistent approach and results have been compared with data obtained from the resolution of Poisson equation using different approximated methods based on the Boltzmann statistic with and without a first order quantum effect correction or the exact Fermi-Dirac statistic. The present work permits to evaluate and quantify the errors made by these approximations in determining the thickness of ultra-thin oxides.


MRS Advances ◽  
2017 ◽  
Vol 2 (02) ◽  
pp. 103-108 ◽  
Author(s):  
Yanbin An ◽  
Aniruddh Shekhawat ◽  
Ashkan Behnam ◽  
Eric Pop ◽  
Ant Ural

ABSTRACT We fabricate and characterize metal-oxide-semiconductor (MOS) devices with graphene as the gate electrode, 5 or 10 nm thick silicon dioxide as the insulator, and silicon as the semiconductor substrate. We find that Fowler-Nordheim tunneling dominates the gate current for the 10 nm oxide device. We also study the temperature dependence of the tunneling current in these devices in the range 77 to 300 K and extract the effective tunneling barrier height as a function of temperature for the 10 nm oxide device. Furthermore, by performing high frequency capacitance-voltage measurements, we observe a local capacitance minimum under accumulation, particularly for the 5 nm oxide device. By fitting the data using numerical simulations based on the modified density of states of graphene in the presence of charged impurities, we show that this local minimum results from the quantum capacitance of graphene. These results provide important insights for the heterogeneous integration of graphene into conventional silicon technology.


2009 ◽  
Vol 156-158 ◽  
pp. 511-516
Author(s):  
Marc Bescond ◽  
Michel Lannoo ◽  
L. Raymond ◽  
F. Michelini

This study presents ionized impurity impacts on silicon nanowire MOS transistors. We calculate the current characteristics with a self-consistent three-dimensional (3D) Green’s function approach and show the effects of both acceptor and donor impurities on the physical electron properties. In particular, we emphasize that the presence of a donor induces different transport phenomena according to the applied gate bias. Our results show that the influence of a single impurity strongly depends on its position and induces high transistor performance variability with current modifications from 50% to two orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document