scholarly journals Enhanced Temperature Dependence of Phonon-Scattering-Limited Mobility in Compressively Uniaxial Strained pMOSFETs

2011 ◽  
Vol 58 (12) ◽  
pp. 4427-4429
Author(s):  
William Po-Nien Chen ◽  
Jack Jyun-Yan Kuo ◽  
Pin Su
2014 ◽  
Vol 5 (3) ◽  
pp. 982-992 ◽  
Author(s):  
M AL-Jalali

Resistivity temperature – dependence and residual resistivity concentration-dependence in pure noble metals(Cu, Ag, Au) have been studied at low temperatures. Dominations of electron – dislocation and impurity, electron-electron, and electron-phonon scattering were analyzed, contribution of these mechanisms to resistivity were discussed, taking into consideration existing theoretical models and available experimental data, where some new results and ideas were investigated.


2013 ◽  
Vol 82 (9) ◽  
pp. 094606 ◽  
Author(s):  
Zi-Wu Wang ◽  
Lei Liu ◽  
Lin Shi ◽  
Xiao-Jing Gong ◽  
Wei-Ping Li ◽  
...  

2003 ◽  
Vol 42 (Part 1, No. 6A) ◽  
pp. 3483-3489 ◽  
Author(s):  
Fam Le Kien ◽  
Akitoshi Koreeda ◽  
Keiji Kuroda ◽  
Masaru Suzuki ◽  
Kohzo Hakuta

2004 ◽  
Vol 241 (15) ◽  
pp. 3600-3606 ◽  
Author(s):  
Bratati Mukhopadhyay ◽  
P. K. Basu

RSC Advances ◽  
2015 ◽  
Vol 5 (96) ◽  
pp. 78406-78413 ◽  
Author(s):  
Tapas Paramanik ◽  
I. Das

A resistance minimum in the temperature dependence of Dy5Pd2 has been interpreted in terms of contributions from magnetic and phonon scattering, electron–electron interactions and weak localization.


2014 ◽  
Vol 778-780 ◽  
pp. 461-466 ◽  
Author(s):  
Hiroki Niwa ◽  
Jun Suda ◽  
Tsunenobu Kimoto

Impact ionization coefficients of 4H-SiC were measured at room temperature and at elevated temperatures up to 200°C. Photomultiplication measurement was done in two complementary photodiodes to measure the multiplication factors of holes (Mp) and electrons (Mn), and ionization coefficients were extracted. Calculated breakdown voltage using the obtained ionization coefficients showed good agreement with the measured values in this study, and also in other reported PiN diodes and MOSFETs. In high-temperature measurement, breakdown voltage exhibited a positive temperature coefficient and multiplication factors showed a negative temperature coefficient. Therefore, extracted ionization coefficient has decreased which can be explained by the increase of phonon scattering. The calculated temperature dependence of breakdown voltage agreed well with the measured values not only for the diodes in this study, but also in PiN diode in other literature.


2017 ◽  
Vol 16 (04) ◽  
pp. 1750034 ◽  
Author(s):  
Ferdinand Grüneis

Inspired by the phenomenon of fluorescence intermittency in quantum dots and other materials, we introduce small off-states (intermissions) which interrupt the generation and recombination (= [Formula: see text]–[Formula: see text]) process in a semiconductor material. If the remaining on-states are power-law distributed, we find an almost pure 1/[Formula: see text] spectrum. Besides well-known [Formula: see text]–[Formula: see text] noise, we obtain two 1/[Formula: see text] noise components which can be attributed to the intermittent generation and recombination process. These components can be given the form of Hooge's relation with a Hooge coefficient [Formula: see text] describing the contribution of the generation and recombination process, respectively. Herein, the coefficients [Formula: see text] and [Formula: see text] describe impact of intermissions which in general are different for the generation and recombination process. The impact of [Formula: see text]–[Formula: see text] noise on 1/[Formula: see text] noise is comprised in the coefficient [Formula: see text] for the generation and [Formula: see text] for the recombination process. These coefficients are specified for an intrinsic and a slightly extrinsic semiconductor as well as for a semiconductor with traps; for the latter, the temperature dependence of 1/[Formula: see text] noise is also investigated. 1/[Formula: see text] noise is shown to be inversely related to the number of neutral and ionized [Formula: see text]-atoms rather than to the number of conduction electrons as defined in Hooge's relation. As a possible origin of 1/[Formula: see text] noise in semiconductors, electron–phonon scattering is suggested.


Sign in / Sign up

Export Citation Format

Share Document