A High-Voltage (>600 V) N-Island LDMOS With Step-Doped Drift Region in Partial SOI Technology

2016 ◽  
Vol 63 (5) ◽  
pp. 1969-1976 ◽  
Author(s):  
Yue Hu ◽  
Hao Wang ◽  
Caixia Du ◽  
Miaomiao Ma ◽  
Mansun Chan ◽  
...  
2014 ◽  
Vol 778-780 ◽  
pp. 841-844 ◽  
Author(s):  
Koji Nakayama ◽  
Shuji Ogata ◽  
Toshihiko Hayashi ◽  
Tetsuro Hemmi ◽  
Atsushi Tanaka ◽  
...  

The reverse recovery characteristics of a 4H-SiC PiN diode under higher voltage and faster switching are investigated. In a high-voltage 4H-SiC PiN diode, owing to an increased thickness, the drift region does not become fully depleted at a relatively low voltage Furthermore, an electron–hole recombination must be taken into account when the carrier lifetime is equal to or shorter than the reverse recovery time. High voltage and fast switching are therefore needed for accurate analysis of the reverse recovery characteristics. The current reduction rate increases up to 2 kA/μs because of low stray inductance. The maximum reverse voltage during the reverse recovery time reaches 8 kV, at which point the drift layer is fully depleted. The carrier lifetime at the high level injection is 0.086 μs at room temperature and reaches 0.53 μs at 250 °C.


Energy ◽  
1993 ◽  
Vol 18 (12) ◽  
pp. 1311-1312
Author(s):  
Jose G Mena ◽  
CAT Salama
Keyword(s):  

2018 ◽  
Vol 33 (12) ◽  
pp. 125019
Author(s):  
Yen-Lin Tsai ◽  
Jone F Chen ◽  
Shang-Feng Shen ◽  
Hao-Tang Hsu ◽  
Chia-Yu Kao ◽  
...  

Author(s):  
Igor Melnyk ◽  
Sergey Tugay ◽  
Volodymyr Kyryk ◽  
Iryna Shved

The algorithm is considered for calculating the focal distance of a hollow conical electron beam generated by high-voltage glow discharge electron guns with magnetic focusing of the beam in the drift region, as well as a method for calculating the diameter of the focal ring and its thickness for such a beam. The proposed algorithm is based on the theory of electron drift in the field of a focusing magnetic lens and is designed using the methods of discrete mathematics and the minimax analysis. The obtained simulation results made it possible to establish the influence of the magnetic lens current on the focal diameter of a hollow conical electron beam and on its focal ring thickness. It is shown that the change in the focal parameters of a hollow conical electron beam can be effectively provided through the regulation of the magnetic lens current.


2019 ◽  
Vol 40 (7) ◽  
pp. 1151-1154 ◽  
Author(s):  
Wentong Zhang ◽  
Lu Li ◽  
Ming Qiao ◽  
Zhenya Zhan ◽  
Shikang Cheng ◽  
...  
Keyword(s):  

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 730 ◽  
Author(s):  
Shen-Li Chen ◽  
Pei-Lin Wu ◽  
Yu-Jen Chen

The weak ESD-immunity problem has been deeply persecuted in ultra high-voltage (UHV) metal-oxide-semiconductor field-effect transistors (MOSFETs) and urgently needs to be solved. In this paper, a UHV 300 V circular n-channel (n) lateral diffused MOSFET (nLDMOS) is taken as the benchmarked reference device for the electrostatic discharge (ESD) capability improvement. However, a super-junction (SJ) structure in the drain region will cause extra depletion zones in the long drain region and reduce the peak value of the channel electric field. Therefore, it may directly increase the resistance of the device to ESD. Then, in this reformation project for UHV nLDMOSs to ESD, two strengthening methods were used. Firstly, the SJ area ratio changed by the symmetric eight-zone elliptical-cylinder length (X) variance (i.e., X = 5, 10, 15 and 20 μm) is added into the drift region of drain side to explore the influence on ESD reliability. From the experimental results, it could be found that the breakdown voltages (VBK) were changed slightly after adding this SJ structure. The VBK values are filled between 391 and 393.5 V. Initially, the original reference sample is 393 V; the VBK changing does not exceed 0.51%, which means that these components can be regarded as little changing in the conduction characteristic after adding these SJ structures under the normal operating conditions. In addition, in the ESD transient high-voltage bombardment situation, the human-body model (HBM) capability of the original reference device is 2500 V. Additionally, as SJs with the length X high-voltage P-type well (HVPW) are inserted into the drain-side drift region, the HBM robustness of these UHV nLDMOSs increases with the length X of the HVPW. When the length X (HVPW) is 20 μm, the HBM value can be upgraded to a maximum value of 5500 V, the ESD capability is increased by 120%. A linear relationship between the HBM immunity level and area ratio of SJs in the drains side in this work can be extracted. The second part revealed that, in the symmetric four-zone elliptical cylinder SJ modulation, the HBM robustness is generally promoted with the increase of HVPW SJ numbers (the highest HBM value (4500 V) of the M5 device improved by 80% as compared with the reference device under test (DUT)). Therefore, from this work, we can conclude that the addition of symmetric elliptical-cylinder SJ structures into the drain-side drift region of a UHV nLDMOS is a good strategy for improving the ESD immunity.


1998 ◽  
Vol 512 ◽  
Author(s):  
B. Jayant Baliga

ABSTRACTProgress made in the development of high performance power rectifiers and switches from silicon carbide are reviewed with emphasis on approaching the 100-fold reduction in the specific on-resistance of the drift region when compared with silicon devices with the same breakdown voltage. The highlights are: (a) Recently completed measurements of impact ionization coefficients in SiC indicate an even higher Baliga's figure of merit than projected earlier. (b) The commonly reported negative temperature co-efficient for breakdown voltage in SiC devices has been shown to arise at defects, allaying concerns that this may be intrinsic to the material. (c) Based upon fundamental considerations, it has been found that Schottky rectifiers offer superior on-state voltage drop than P-i-N rectifiers for reverse blocking voltages below 3000 volts. (d) Nearly ideal breakdown voltage has been experimentally obtained for Schottky diodes using an argon implanted edge termination. (e) Planar ion-implanted junctions have been successfully fabricated using oxide as a mask with high breakdown voltage and low leakage currents by using a filed plate edge termination. (f) High inversion layer mobility has been experimentally demonstrated on both 6H and 4H-SiC by using a deposited oxide layer as gate dielectric. (g) A novel, high-voltage, normally-off, accumulation-channel, MOSFET has been proposed and demonstrated with 50x lower specific on-resistance than silicon devices in spite of using logic-level gate drive voltages. These results indicate that SiC based power devices could become commercially viable in the 21st century if cost barriers can be overcome.


2006 ◽  
Vol 527-529 ◽  
pp. 1449-1452 ◽  
Author(s):  
Yang Sui ◽  
Ginger G. Walden ◽  
Xiao Kun Wang ◽  
James A. Cooper

We compare the on-state characteristics of five 4H-SiC power devices designed to block 20 kV. At such a high blocking voltage, the on-state current density depends heavily on the degree of conductivity modulation in the drift region, making the IGBT and thyristor attractive devices for high blocking voltages.


Sign in / Sign up

Export Citation Format

Share Document