Device Options and Design Considerations for High-Voltage (10-20 kV) SiC Power Switching Devices

2006 ◽  
Vol 527-529 ◽  
pp. 1449-1452 ◽  
Author(s):  
Yang Sui ◽  
Ginger G. Walden ◽  
Xiao Kun Wang ◽  
James A. Cooper

We compare the on-state characteristics of five 4H-SiC power devices designed to block 20 kV. At such a high blocking voltage, the on-state current density depends heavily on the degree of conductivity modulation in the drift region, making the IGBT and thyristor attractive devices for high blocking voltages.

2014 ◽  
Vol 778-780 ◽  
pp. 1077-1082 ◽  
Author(s):  
T. Paul Chow

The present status of the development and commercialization of SiC and GaN power devices for power electronics applications is presented. The technology obstacles and needs as well as future trend in these power devices are also discussed.


Author(s):  
Ankan De ◽  
Adam Morgan ◽  
Subhashish Bhattacharya ◽  
Douglas C. Hopkins

In this paper an attempt has been made to demonstrate various package design considerations to accommodate series connection of high voltage Si-IGBT (6500V/25A die) and SiC-Diode (6500V/25A die). The effects of connecting the cathode of the series diode to the collector of the IGBT versus connecting the emitter of the IGBT to the anode of the series diode has been analyzed in regards to gate terminal operation and the parasitic line inductance of the structure. ANSYS Q3D/MAXWELL software have been used to analyze and extract parasitic inductance and capacitances in the package along with electromagnetic fields, electric potentials, and current density distributions throughout the package for variable parameters. SIMPLIS-SIMETRIX is used to simulate typical switch behavior for different parasitic parameters under hard switched conditions. Various simulation results have then been used to redesign and justify the optimized package structure for the final current switch design. The thermal behavior of such a package is also conducted in COMSOL in order to ensure that the thermal ratings of the power devices is not exceeded, and to understand where potentially harmful hotspots could arise and estimate the maximum attainable frequency of operation. The main motivation of this work is to enumerate detailed design considerations for packing a high voltage current switch package.


2003 ◽  
Vol 764 ◽  
Author(s):  
Sei-Hyung Ryu ◽  
Anant K. Agarwal ◽  
James Richmond ◽  
John W. Palmour

AbstractVery high critical field, reasonable bulk electron mobility, and high thermal conductivity make 4H-Silicon carbide very attractive for high voltage power devices. These advantages make high performance unipolar switching devices with blocking voltages greater than 1 kV possible in 4H-SiC. Several exploratory devices, such as vertical MOSFETs and JFETs, have been reported in SiC. However, most of the previous works were focused on high voltage aspects of the devices, and the high speed switching aspects of the SiC unipolar devices were largely neglected. In this paper, we report on the static and dynamic characteristics of our 4H-SiC DMOSFETs. A simple model of the on-state characteristics of 4H-SiC DMOSFETs is also presented.


2015 ◽  
Vol 30 (8) ◽  
pp. 084001 ◽  
Author(s):  
S Ryu ◽  
C Capell ◽  
E Van Brunt ◽  
C Jonas ◽  
M O’Loughlin ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 1143-1146 ◽  
Author(s):  
Tomohiro Tamaki ◽  
Ginger G. Walden ◽  
Yang Sui ◽  
James A. Cooper

We compare the on-state and switching performance of high-voltage 4H-SiC n-channel DMOSFETs and p-channel IGBTs within a three-dimensional parameter space defined by blocking voltage, switching frequency, and current density. We determine the maximum current density each device can carry at a given switching frequency, such that the total power dissipation is 300 W/cm2. The IGBT current depends strongly on lifetime in the NPT buffer layer, and only weakly on lifetime in the drift layer. The MOSFET current is essentially independent of frequency.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (4) ◽  
pp. 299-304 ◽  
Author(s):  
T. Paul Chow

AbstractThe successful commercialization of unipolar Schottky rectifiers in the 4H polytype of silicon carbide has resulted in a market demand for SiC high-power switching devices. This article reviews recent progress in the development of high-voltage 4H-SiC bipolar power electronics devices.We also present the outstanding material and processing challenges, reliability concerns, and future trends in device commercialization.


2016 ◽  
Vol 858 ◽  
pp. 978-981 ◽  
Author(s):  
Hossein Elahipanah ◽  
Arash Salemi ◽  
Carl Mikael Zetterling ◽  
Mikael Östling

High voltage 4H-SiC bipolar junction transistors (BJTs) with modified etched junction termination extension (JTE) were fabricated and optimized in terms of the length (LJTE) and remaining dose (DJTE) of JTEs. It is found that for a given total termination length (Σ LJTEi), a decremental JTE length from the innermost edge to the outermost mesa edge of the device will result in better modification of the electric field. A breakdown voltage (BV) of 4.95 kV is measured for the modified device which shows ~20% improvement of the termination efficiency for no extra cost or extra process step. Equal-size BJTs by interdigitated-emitter with different number of fingers and cell pitches were fabricated. The maximum current gain of 40 is achieved for a single finger device with the emitter width of 40 µm at IC = 0.25 A (JC = 310 A/cm2) which corresponds to RON = 33 mΩ.cm2. It is presented that the current gain decreases by having more fingers while the maximum current gain is achieved at higher current density.


Sign in / Sign up

Export Citation Format

Share Document