A 1.2 V, Highly Reliable RHBD 10T SRAM Cell for Aerospace Application

2021 ◽  
Vol 68 (5) ◽  
pp. 2265-2270
Author(s):  
Suraj Singh Dohar ◽  
Siddharth R. K. ◽  
Vasantha M. H. ◽  
Nithin Kumar Y. B.
2017 ◽  
Vol 10 (3) ◽  
pp. 122
Author(s):  
Flur Ismagilov ◽  
Nikita Uzhegov ◽  
Vyacheslav Vavilov ◽  
Denis Gusakov

2019 ◽  
Vol 12 (6) ◽  
pp. 290 ◽  
Author(s):  
Viacheslav Vavilov ◽  
Luca Papini ◽  
Flyur Ismagilov ◽  
Shoujun Song ◽  
Valentina Ayguzina

Author(s):  
Peter Egger ◽  
Stefan Müller ◽  
Martin Stiftinger

Abstract With shrinking feature size of integrated circuits traditional FA techniques like SEM inspection of top down delayered devices or cross sectioning often cannot determine the physical root cause. Inside SRAM blocks the aggressive design rules of transistor parameters can cause a local mismatch and therefore a soft fail of a single SRAM cell. This paper will present a new approach to identify a physical root cause with the help of nano probing and TCAD simulation to allow the wafer fab to implement countermeasures.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


Sign in / Sign up

Export Citation Format

Share Document