A New Approach for SRAM Soft Defect Root Cause Identification

Author(s):  
Peter Egger ◽  
Stefan Müller ◽  
Martin Stiftinger

Abstract With shrinking feature size of integrated circuits traditional FA techniques like SEM inspection of top down delayered devices or cross sectioning often cannot determine the physical root cause. Inside SRAM blocks the aggressive design rules of transistor parameters can cause a local mismatch and therefore a soft fail of a single SRAM cell. This paper will present a new approach to identify a physical root cause with the help of nano probing and TCAD simulation to allow the wafer fab to implement countermeasures.

Author(s):  
V.K. Ravikumar ◽  
R. Wampler ◽  
M.Y. Ho ◽  
J. Christensen ◽  
S.L. Phoa

Abstract Laser voltage probing is the newest generation of tools that perform timing analysis for electrical fault isolation in advanced failure analysis facilities. This paper uses failure analysis case studies on SOI to showcase the implementation of laser voltage probing in the failure analysis flow and highlight its significance in root-cause identification.


2019 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Yann A. Meunier

Racism is a scourge which has plagued societies for centuries. Its root cause can be found in the fear of others. Some authors have considered it as a mental disorder in its more severe forms. We approach it from a novel and highly actionable angle by comparing it to a transmissible disease, candidiasis, with which racism holds many essential similarities that we outline in details. We also suggest various ways to eradicate and mitigate racism through practical action plans.


Author(s):  
J. N. C. de Luna ◽  
M. O. del Fierro ◽  
J. L. Muñoz

Abstract An advanced flash bootblock device was exceeding current leakage specifications on certain pins. Physical analysis showed pinholes on the gate oxide of the n-channel transistor at the input buffer circuit of the affected pins. The fallout contributed ~1% to factory yield loss and was suspected to be caused by electrostatic discharge or ESD somewhere in the assembly and test process. Root cause investigation narrowed down the source to a charged core picker inside the automated test equipment handlers. By using an electromagnetic interference (EMI) locator, we were able to observe in real-time the high amplitude electromagnetic pulse created by this ESD event. Installing air ionizers inside the testers solved the problem.


Author(s):  
Dan Bodoh ◽  
Kent Erington ◽  
Kris Dickson ◽  
George Lange ◽  
Carey Wu ◽  
...  

Abstract Laser-assisted device alteration (LADA) is an established technique used to identify critical speed paths in integrated circuits. LADA can reveal the physical location of a speed path, but not the timing of the speed path. This paper describes the root cause analysis benefits of 1064nm time resolved LADA (TR-LADA) with a picosecond laser. It shows several examples of how picosecond TR-LADA has complemented the existing fault isolation toolset and has allowed for quicker resolution of design and manufacturing issues. The paper explains how TR-LADA increases the LADA localization resolution by eliminating the well interaction, provides the timing of the event detected by LADA, indicates the propagation direction of the critical signals detected by LADA, allows the analyst to infer the logic values of the critical signals, and separates multiple interactions occurring at the same site for better understanding of the critical signals.


2018 ◽  
Author(s):  
Oberon Dixon-Luinenburg ◽  
Jordan Fine

Abstract In this paper, we demonstrate a novel nanoprobing approach to establish cause-and-effect relationships between voltage stress and end-of-life performance loss and failure in SRAM cells. A Hyperion II Atomic Force nanoProber was used to examine degradation for five 6T cells on an Intel 14 nm processor. Ten minutes of asymmetrically applied stress at VDD=2 V was used to simulate a ‘0’ bit state held for a long period, subjecting each pullup and pulldown to either VDS or VGS stress. Resultant degradation caused read and hold margins to be reduced by 20% and 5% respectively for the ‘1’ state and 5% and 2% respectively for the ‘0’ state. ION was also reduced, for pulldown and pullup respectively, by 4.5% and 5.4% following VGS stress and 2.6% and 33.8% following VDS stress. Negative read margin failures, soft errors, and read time failures all become more prevalent with these aging symptoms whereas write stability is improved. This new approach enables highly specific root cause analysis and failure prediction for end-of-life in functional on-product SRAM.


Author(s):  
Nathan Wang ◽  
Saunil Shah ◽  
Camille Garcia ◽  
Vicente Pasating ◽  
George Perreault

Abstract MEMS samples, with their relatively large size and weight, present a unique challenge to the failure analyst as they also included thin films and microstructures used in conventional integrated circuits. This paper describes how to accommodate the large MEMS structures without skimping on the microanalyses needed to get to the root cause. Investigations of tuning folk gyroscopes were used to demonstrate these new techniques.


Author(s):  
Mayue Xie ◽  
Zhiguo Qian ◽  
Mario Pacheco ◽  
Zhiyong Wang ◽  
Rajen Dias ◽  
...  

Abstract Recently, a new approach for isolation of open faults in integrated circuits (ICs) was developed. It is based on mapping the radio-frequency (RF) magnetic field produced by the defective part fed with RF probing current, giving the name to Space Domain Reflectometry (SDR). SDR is a non-contact and nondestructive technique to localize open defects in package substrates, interconnections and semiconductor devices. It provides 2D failure isolation capability with defect localization resolution down to 50 microns. It is also capable of scanning long traces in Si. This paper describes the principles of the SDR and its application for the localization of open and high resistance defects. It then discusses some analysis methods for application optimization, and gives examples of test samples as well as case studies from actual failures.


2021 ◽  
Author(s):  
Jinwei Jia ◽  
Danshi Wang ◽  
Chunyu Zhang ◽  
Hui Yang ◽  
Luyao Guan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document