A Physically Based Soil Moisture Index From Passive Microwave Brightness Temperatures for Soil Moisture Variation Monitoring

2020 ◽  
Vol 58 (4) ◽  
pp. 2782-2795 ◽  
Author(s):  
Jiangyuan Zeng ◽  
Kun-Shan Chen ◽  
Chenyang Cui ◽  
Xiaojing Bai
Author(s):  
J. Zeng ◽  
K.-S. Chen ◽  
C. Cui ◽  
H. Bi

Abstract. Knowledge on the spatial-temporal variation of soil moisture is essential to many hydrometeorology applications. In this study, we proposed a new soil moisture index (SMI) from passive microwave observations, aiming to capture the soil moisture variability. The new SMI is developed based on the underlying physical basis that vegetation and surface roughness exert similar effects on the variation of land surface emissivity and microwave polarization difference radio (MPDI), but they act in an opposite way compared with soil moisture. Hence, we can obtain the SMI value in a two-dimensional space by combining use of land surface emissivity and MPDI to isolate the contribution of soil moisture and that of vegetation and surface roughness. We calculated the SMI by using the L-band SMAP Level-3 datasets and validated it with five well calibrated and dense soil moisture networks and also compared it with SMAP and ESA CCI soil moisture products. The results show the SMI exhibits the highest R (0.87) and lowest RMSE (0.028 m3 m−3) value after removing the systematic bias by using the cumulative distribution function (CDF) matching technique among the satellite products during the whole study period, thus demonstrating its good capability of tracking the temporal variation of soil moisture and its potential usage in various hydrometeorology applications.


2021 ◽  
Vol 253 ◽  
pp. 112233
Author(s):  
Drew S. Lyons ◽  
Solomon Z. Dobrowski ◽  
Zachary A. Holden ◽  
Marco P. Maneta ◽  
Anna Sala

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1564 ◽  
Author(s):  
Melanie Oertel ◽  
Francisco Meza ◽  
Jorge Gironás ◽  
Christopher A. Scott ◽  
Facundo Rojas ◽  
...  

Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), and Standardized Soil Moisture Index (SSMI) in three drought-prone regions: Sonora (Mexico), Maipo (Chile), and Mendoza-Tunuyán (Argentina) to study their temporal interdependence. For this evaluation we use precipitation, temperature, and streamflow data from gauges that are managed by governmental institutions, and satellite-based soil moisture from the ESA CCI SM v03.3 combined data set. Results confirm that effective drought monitoring should be carried out (1) at river-basin scale, (2) including several variables, and (3) considering hydro-meteorological processes from outside its boundaries.


Author(s):  
Tiago de M. Inocêncio ◽  
Alfredo Ribeiro Neto ◽  
Alzira G. S. S. Souza

ABSTRACT The sequence of drought events in the Northeast of Brazil in recent decades raises attention to the importance of studying this phenomenon. The objective of this study was to evaluate the duration and severity of drought events from 1988 to 2018 in hydrographic basins of the state of Pernambuco, Brazil, using two drought indexes: Standardized Soil Moisture Index and Soil Moisture Condition Index, calculated based on data of the Soil Moisture Project of the European Space Agency’s Climate Change Initiative. The duration of the droughts was determined considering the months between their beginning and end, and their severity was based on the area formed in the graph between the curve of the index and the x-axis. The soil moisture database showed to be a promising tool for the analysis and monitoring of drought events in the Northeast region of Brazil, mainly for analysis and monitoring of drought events. The indexes allowed the evaluation of the drought phenomenon over the 30-year period, showing increases from 2012, which were more pronounced in the Semiarid region. The hydrographic basins responded differently to a same event, depending on the climate characteristics of the region in which they are located. Consecutive years with rainfall below the historical mean increased the magnitude of the droughts, as found for the 2012-2017 period, in which the indexes presented delays to return to more favorable values, showing the effect that one drought year has on the following year.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1225
Author(s):  
Lanka Karthikeyan ◽  
Ming Pan ◽  
Dasika Nagesh Kumar ◽  
Eric F. Wood

Passive microwave sensors use a radiative transfer model (RTM) to retrieve soil moisture (SM) using brightness temperatures (TB) at low microwave frequencies. Vegetation optical depth (VOD) is a key input to the RTM. Retrieval algorithms can analytically invert the RTM using dual-polarized TB measurements to retrieve the VOD and SM concurrently. Algorithms in this regard typically use the τ-ω types of models, which consist of two third-order polynomial equations and, thus, can have multiple solutions. Through this work, we find that uncertainty occurs due to the structural indeterminacy that is inherent in all τ-ω types of models in passive microwave SM retrieval algorithms. In the process, a new analytical solution for concurrent VOD and SM retrieval is presented, along with two widely used existing analytical solutions. All three solutions are applied to a fixed framework of RTM to retrieve VOD and SM on a global scale, using X-band Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) TB data. Results indicate that, with structural uncertainty, there ensues a noticeable impact on the VOD and SM retrievals. In an era where the sensitivity of retrieval algorithms is still being researched, we believe the structural indeterminacy of RTM identified here would contribute to uncertainty in the soil moisture retrievals.


2008 ◽  
Vol 9 (4) ◽  
pp. 660-676 ◽  
Author(s):  
Venkataramana Sridhar ◽  
Kenneth G. Hubbard ◽  
Jinsheng You ◽  
Eric D. Hunt

Abstract This paper examines the role of soil moisture in quantifying drought through the development of a drought index using observed and modeled soil moisture. In Nebraska, rainfall is received primarily during the crop-growing season and the supply of moisture from the Gulf of Mexico determines if the impending crop year is either normal or anomalous and any deficit of rain leads to a lack of soil moisture storage. Using observed soil moisture from the Automated Weather Data Network (AWDN), the actual available water content for plants is calculated as the difference between observed or modeled soil moisture and wilting point, which is subsequently normalized with the site-specific, soil property–based, idealistic available water for plants that is calculated as the difference between field capacity and wilting point to derive the soil moisture index (SMI). This index is categorized into five classes from no drought to extreme drought to quantitatively assess drought in both space and time. Additionally, with the aid of an in-house hydrology model, soil moisture was simulated in order to compute model-based SMI and to compare the drought duration and severity for various sites. The results suggest that the soil moisture influence, a positive feedback process reported in many earlier studies, is unquestionably a quantitative indicator of drought. Also, the severity and duration of drought across Nebraska has a clear gradient from west to east, with the Panhandle region experiencing severe to extreme drought in the deeper soil layers for longer periods (>200 days), than the central and southwestern regions (125–150 days) or the eastern regions about 100 days or less. The anomalous rainfall years can eliminate the distinction among these regions with regard to their drought extent, severity, and persistence, thus making drought a more ubiquitous phenomenon, but the recovery from drought can be subject to similar gradations. The spatial SMI maps presented in this paper can be used with the Drought Monitor maps to assess the local drought conditions more effectively.


1917 ◽  
Vol 63 (2) ◽  
pp. 151-152
Author(s):  
Francis Ramaley

Sign in / Sign up

Export Citation Format

Share Document