Si Via Interconnection Technique with Thermal Budget Design

Author(s):  
Jeong Jinwoo ◽  
Lee Eunsung ◽  
Kim Hyeon Cheol ◽  
Moon Changyoul ◽  
Chun Kukjin
Keyword(s):  
2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Ashish Kumar ◽  
Wen-Hsi Lee

 In this study, we fabricate Si/SiGe core-shell Junctionless accumulation mode (JAM)FinFET devices through a rapid and novel process with four main steps, i.e. e-beam lithography definition, sputter deposition, alloy combination annealing, and chemical solution etching. The height of Si core is 30 nm and the thickness of Si/SiGe core-shell is about 2 nm. After finishing the fabrication of devices, we widely studied the electrical characteristics of poly Si/SiGe core-shell JAM FinFET transistors from a view of different Lg and Wch. A poly-Si/SiGe core -shell JAMFETs was successfully demonstrated and it also exhibits  a superior subthreshold swing of 81mV/dec and high on/off ratio > 105 when annealing for 1hr at 600°C. The thermal diffusion process condition for this study are 1hr at 600°C and 6hr at 700°C for comparison. The annealing condition at 700oC for 6 hours shows undesired electrical characteristics against the other. Results suggests that from over thermal budget causes a plenty of Ge to precipitate against to form SiGe thin film. Annealing JAMFETs at low temperature shows outstanding Subthreshold swing and better swing condition when compared to its counterpart i.e. at higher temperature. This new process can still fabricate a comparable performance to classical planar FinFET in driving current. 


2010 ◽  
Vol 16 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Kah-Wee Ang ◽  
Tsung-Yang Liow ◽  
Ming-Bin Yu ◽  
Qing Fang ◽  
Junfeng Song ◽  
...  

2004 ◽  
Vol 114-115 ◽  
pp. 46-50 ◽  
Author(s):  
Sundar Ramamurthy ◽  
Balasubramanian Ramachandran ◽  
Jeong Soo Byun ◽  
Tarpan Dixit ◽  
Aaron Hunter ◽  
...  

Author(s):  
Zhicheng Wu ◽  
Jacopo Franco ◽  
Anne Vandooren ◽  
Ben Kaczer ◽  
Philippe Roussel ◽  
...  

2010 ◽  
Vol 4 (1) ◽  
pp. 35-51 ◽  
Author(s):  
H.-W. Jacobi ◽  
F. Domine ◽  
W. R. Simpson ◽  
T. A. Douglas ◽  
M. Sturm

Abstract. The specific surface area (SSA) of the snow constitutes a powerful parameter to quantify the exchange of matter and energy between the snow and the atmosphere. However, currently no snow physics model can simulate the SSA. Therefore, two different types of empirical parameterizations of the specific surface area (SSA) of snow are implemented into the existing one-dimensional snow physics model CROCUS. The parameterizations are either based on diagnostic equations relating the SSA to parameters like snow type and density or on prognostic equations that describe the change of SSA depending on snow age, snowpack temperature, and the temperature gradient within the snowpack. Simulations with the upgraded CROCUS model were performed for a subarctic snowpack, for which an extensive data set including SSA measurements is available at Fairbanks, Alaska for the winter season 2003/2004. While a reasonable agreement between simulated and observed SSA values is obtained using both parameterizations, the model tends to overestimate the SSA. This overestimation is more pronounced using the diagnostic equations compared to the results of the prognostic equations. Parts of the SSA deviations using both parameterizations can be attributed to differences between simulated and observed snow heights, densities, and temperatures. Therefore, further sensitivity studies regarding the thermal budget of the snowpack were performed. They revealed that reducing the thermal conductivity of the snow or increasing the turbulent fluxes at the snow surfaces leads to a slight improvement of the simulated thermal budget of the snowpack compared to the observations. However, their impact on further simulated parameters like snow height and SSA remains small. Including additional physical processes in the snow model may have the potential to advance the simulations of the thermal budget of the snowpack and, thus, the SSA simulations.


2009 ◽  
Vol 12 (9) ◽  
pp. H319 ◽  
Author(s):  
Il-Suk Kang ◽  
Sung-Hun Yu ◽  
Hyun-Sang Seo ◽  
Jeong-Hun Kim ◽  
Jun-Mo Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document