Magnetic Core-Size Distribution of Magnetic Nanoparticles Estimated From Magnetization, AC Susceptibility, and Relaxation Measurements

2017 ◽  
Vol 53 (11) ◽  
pp. 1-5 ◽  
Author(s):  
Ahmed L. Elrefai ◽  
Teruyoshi Sasayama ◽  
Takashi Yoshida ◽  
Keiji Enpuku
2019 ◽  
Vol 58 (9) ◽  
pp. 097003 ◽  
Author(s):  
Zhongzhou Du ◽  
Yi Sun ◽  
Oji Higashi ◽  
Keiji Enpuku ◽  
Takashi Yoshida

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1623
Author(s):  
Yi Sun ◽  
Na Ye ◽  
Dandan Wang ◽  
Zhongzhou Du ◽  
Shi Bai ◽  
...  

The core size distribution is an important physical characteristic of magnetic nanoparticles (MNPs) because it seriously affects biomedical and biological applications. In this study, we proposed an improved method for estimating the distributions, which optimizes the excitation frequency based on AC susceptibility to avoid the effects of Brownian relaxation. Moreover, the first, third, and fifth magnetization harmonics under different excitation field strengths are used for estimating core size distributions to avoid measuring higher harmonics. The experiment results show that the improved AC harmonic method can accurately and quickly estimate the distribution of large core sizes compared with the method of static magnetization (M–H) curves, which is a competitive advantage in MNP immunoassays.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e46756 ◽  
Author(s):  
Jen-Jie Chieh ◽  
Kai-Wen Huang ◽  
Yang-De Lee ◽  
Herng-Er Horng ◽  
Hong-Chang Yang ◽  
...  

2014 ◽  
Vol 14 (18) ◽  
pp. 10061-10084 ◽  
Author(s):  
D. Liu ◽  
J. D. Allan ◽  
D. E. Young ◽  
H. Coe ◽  
D. Beddows ◽  
...  

Abstract. Black carbon aerosols (BC) at a London urban site were characterised in both winter- and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However, the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC–AMS–PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core – Dp/Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16 and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BCsf ranged from 6 ± 2% to 11 ± 5% to 18 ± 10%, respectively, but importantly the larger BC core sizes lead to an increased fraction of BCsf in terms of mass than number (for W, SE and E air masses, the BCsf mass fractions ranged from 16 ± 6%, 24 ± 10% and 39 ± 14%, respectively). An increased fraction of non-BC particles (particles that did not contain a BC core) was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC–AMS–PMF multiple linear regression method (BC–AMS–PMF : SP2 ratio = 1.05, r2 = 0.80) over the entire experimental period. Good agreement was found between BCsf attributed with the Aethalometer model and the SP2. However, the assumed absorption Ångström exponent (αwb) had to be changed according to the different air mass sectors to yield the best comparison with the SP2. This could be due to influences of fuel type or burn phase.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1945 ◽  
Author(s):  
Marta Ziegler-Borowska ◽  
Kinga Mylkie ◽  
Pawel Nowak ◽  
Patryk Rybczynski ◽  
Adam Sikora ◽  
...  

Binding and transport of ligands is one of the most important functions of human blood serum proteins. Human serum albumin is found in plasma at the highest concentration. Because of this, it is important to study protein–drug interactions for this albumin. Since there is no single model describing this interaction, it is necessary to measure it for each active substance. Drug binding should also be studied in conditions that simulate pathological conditions of the body, i.e., after oxidative stress. Due to this, it is expected that the methods for testing these interactions need to be easy and fast. In this study, albumin immobilized on magnetic nanoparticles was successfully applied in the study of protein–drug binding. Ketoprofen was selected as a model drug and interactions were tested under normal conditions and artificially induced oxidative stress. The quality of obtained results for immobilized protein was confirmed with those for free albumin and literature data. It was shown that the type of magnetic core coverage does not affect the quality of the obtained results. In summary, a new, fast, effective, and universal method for testing protein–drug interactions was proposed, which can be performed in most laboratories.


Soft Matter ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 174-183
Author(s):  
Patrick Kreissl ◽  
Christian Holm ◽  
Rudolf Weeber

We show that hydrodynamic coupling alone can shift the magnetic AC susceptibility spectra of magnetic nanoparticles in a polymer suspension.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryszard Krzyminiewski ◽  
Bernadeta Dobosz ◽  
Grzegorz Schroeder ◽  
Joanna Kurczewska

AbstractPotential application of magnetic nanoparticles as drug carriers in medical treatment requires prior determination of their effects on cells. In this work different spin labels and magnetic nanoparticles functionalized with spin labels as well as their interaction with yeast cells were investigated using electron spin resonance (ESR) method. ESR was demonstrated to be a suitable method for monitoring of magnetic core and attached spin labels. Particular emphasis was placed on characterization of endocytosis and redox processes running inside the cell, resulting in recombination of spin labels. Such data could only be obtained at reduced temperature of ESR measurements.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1845
Author(s):  
Abdulkader Baki ◽  
Norbert Löwa ◽  
Amani Remmo ◽  
Frank Wiekhorst ◽  
Regina Bleul

Micromixer technology is a novel approach to manufacture magnetic single-core iron oxide nanoparticles that offer huge potential for biomedical applications. This platform allows a continuous, scalable, and highly controllable synthesis of magnetic nanoparticles with biocompatible educts via aqueous synthesis route. Since each biomedical application requires specific physical and chemical properties, a comprehensive understanding of the synthesis mechanisms is not only mandatory to control the size and shape of desired nanoparticle systems but, above all, to obtain the envisaged magnetic particle characteristics. The accurate process control of the micromixer technology can be maintained by adjusting two parameters: the synthesis temperature and the residence time. To this end, we performed a systematic variation of these two control parameters synthesizing magnetic nanoparticle systems, which were analyzed afterward by structural (transmission electron microscopy and differential sedimentation centrifugation) and, especially, magnetic characterization methods (magnetic particle spectroscopy and AC susceptibility). Furthermore, we investigated the reproducibility of the microtechnological nanoparticle manufacturing process compared to batch preparation. Our characterization demonstrated the high magnetic quality of single-core iron oxide nanoparticles with core diameters in the range of 20 nm to 40 nm synthesized by micromixer technology. Moreover, we demonstrated the high capability of a newly developed benchtop magnetic particle spectroscopy device that directly monitored the magnetic properties of the magnetic nanoparticles with the highest sensitivity and millisecond temporal resolution during continuous micromixer synthesis.


2019 ◽  
Vol 59 (1) ◽  
pp. 010904 ◽  
Author(s):  
Zhongzhou Du ◽  
Yi Sun ◽  
Oji Higashi ◽  
Yuki Noguchi ◽  
Keiji Enpuku ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document