Coincident Sound Level Surveys and Dosimeter Studies to Determine Noise Exposure of Electric Utility Power Plant Employees

1979 ◽  
Vol PAS-98 (3) ◽  
pp. 1022-1025
Author(s):  
C. Hickman ◽  
J. Burson ◽  
E. Thompson
Author(s):  
Chun-Yip Hon ◽  
Illia Tchernikov ◽  
Craig Fairclough ◽  
Alberto Behar

Excessive noise levels are a prevalent issue in food processing operations and, although there have been numerous studies on occupational noise, no single study has used a concurrent mixed-methods approach. Employing this study design allows for an understanding of the level of convergence (similarity) between measured noise levels and workers’ attitudes and perceptions towards noise. This, in turn, allows for the identification of potential challenges with respect to the implementation of hearing conservation efforts. In this study, spot noise measurements were collected using a sound level meter. One-on-one interviews were conducted with workers to determine attitudes and perceptions towards noise in their workplaces. Subsequently, the results of the noise measurements (quantitative data) were integrated with the survey responses (qualitative data) to identify convergence. The majority of the noise measurements were found to exceed 85 dBA—the criterion mandated by the local occupational health and safety legislation. Although all study participants felt that it was noisy in the workplace, a large proportion of respondents indicated that the noise was not bothersome. With workers’ perception being contradictory to the measured noise levels, it is a challenge to implement hearing conservation measures unless changes are made to raise the awareness of the risks associated with excessive noise exposure.


2021 ◽  
Vol 263 (1) ◽  
pp. 5154-5160
Author(s):  
Koichi Makino ◽  
Naoaki Shinohara

In Japan, yearly average of (day-evening-night sound level) as cumulative noise index has been adopted in national noise guideline of "Environmental Quality Standards for Aircraft Noise." Daily flight movements at civil airports are almost stable because of scheduled airline flight. On the other, daily total flight movements at military airfields greatly change day to day because of training flights, etc. Thus, noise exposure around the airport may change significantly from day to day due to change of flight movement. This paper shows examples of fluctuations, frequency distribution and deviation of daily using aircraft noise monitoring data around civil airports and military airfields. In the case of civil airports, standard deviation of daily was less than 5 dB at the monitoring stations where the yearly average of were about 55 dB or more. However, the standard deviation of daily increased 10 dB or more in some cases at points where yearly average of less than 55 dB. Furthermore, in the case of military airfields, the standard deviation of daily were 5 dB or more for all monitoring stations.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P160-P160
Author(s):  
Angela P Black ◽  
James D Sidman

Objectives To demonstrate that neonatal ventilators produce high noise levels through bone conduction (BC) via endotracheal tubes, as well as air conduction (AC) from ambient noise. Methods A sound level meter was used to measure the noise levels 4 feet from the ventilator and in direct contact at the end of a balloon attached to the ETT to simulate the noise presented to the infant. 3 commonly used neonatal ventilators (Sensormedics 3100A, VIP Bird and Bunnell Jet) were examined. Results Noise levels were significantly higher (6 – 14 dB) at the end of the ETT than 4 ft from the ventilator for all ventilators studied. Conclusions Previous studies have shown high ambient noise levels in NICUs, but have failed to address the actual noise presented to the infant. ETT transmission of noise as a direct bone stimulus through the skull has been overlooked. This study has shown that high noise intensities are being presented not only as AC, but as BC to the infants though the ETT. This study demonstrates, therefore, that ear protection alone will not save these at-risk infants from hearing damage. More must be done to decrease noise exposure and develop quieter machines.


1996 ◽  
Vol 39 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Thomas G. Dolan ◽  
James F. Maurer

Although noise may be innocuous in many vocational environments, there is a growing concern in industry that it can reach hazardous levels when amplified by hearing aids. This study examined the daily noise exposures associated with hearing aid use in industry. This was done by both laboratory and site measurements in which hearing aids were coupled to the microphone of an integrating sound level meter or dosimeter. The former method involved the use of recorded railroad and manufacturing noise and a Bruel and Kjaer 4128 Head and Torso simulator. In the latter procedure, a worker wore one of three hearing aids coupled to a dosimeter during 8-hour shifts in a manufacturing plant. Both methods demonstrated that even when amplified by mild-gain hearing aids, noise exposures rose from time-weighted averages near 80 dBA to well above the OSHA maximum of 90 dBA. The OSHA maximum was also exceeded when moderate and high gain instruments were worn in non-occupational listening environments. The results suggest that current OSHA regulations that limit noise exposure in sound field are inappropriate for hearing aid users.


2020 ◽  
Vol 185 (9-10) ◽  
pp. e1551-e1555
Author(s):  
Sean E Slaven ◽  
Benjamin M Wheatley ◽  
Daniel L Christensen ◽  
Sameer K Saxena ◽  
Robert J McGill

Abstract Introduction Noise exposure is an occupational health concern for certain professions, especially military servicemembers and those using power tools on a regular basis. The purpose of this study was to quantify noise exposure during total hip arthroplasty (THA) and total knee arthroplasty (TKA) cases compared to the recommended standard for occupational noise exposure. Materials and Methods A sound level meter was used to record cumulative and peak noise exposure levels in 10 primary THA and 10 primary TKA surgeries, as well as 10 arthroscopy cases as controls. Measurements at the distance of the surgeon were taken in all cases. In TKA cases, measurements were taken at 3 feet and 8 feet from the surgeon, to simulate the position of the anesthetist and circulating nurse, respectively. Results Time-weighted average was significantly higher in THA (64.7 ± 5.2 dB) and TKA (64.5 ± 6.8 dB) as compared to arthroscopic cases (51.1 ± 7.5 dB, P < 0.001) and higher at the distance of the surgeon (64.5 ± 6.8 dB) compared to the anesthetist (52.9 ± 3.8 dB) and the circulating nurse (54.8 ± 11.2 dB, P = 0.006). However, time-weighted average was below the recommended exposure level of 85 dB for all arthroplasty cases. Peak levels did not differ significantly between surgery type or staff role, and no values above the ceiling limit of 140 dB were recorded. Surgeon’s daily noise dose percentage per case was 1.78% for THA and 2.04% for TKA. Conclusion Noise exposure in THA and TKA was higher than arthroscopic cases but did not exceed occupational standards. A daily dose percentage of approximately 2% per case indicates that repeated noise exposure likely does not reach hazardous levels in modern arthroplasty practice.


2020 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Diana Kusuma Wardhani ◽  
Jojok Mukono Mukono

Introduction: As one of the preferred modes of land transportation, the frequency of train services was very high. One of the negative impacts arising from train activity was noise. The high noise intensity of the train causes hearing loss. Method: This study aims to analyze the differences in the incidence of hearing loss in 2 groups of residents in Turirejo Lawang Malang. This research used the observational method and the data were analyzed descriptive qualitative. A total of 20 people were selected as respondents by purposive sampling. Noise intensity was measured by Sound Level Meter and audiometric measurements were examined at SIMA Malang Laboratory. Result and Discussion: The prevalence of sensorineural hearing loss was more common in residents whose homes at 3-7 m away from the railroad tracks. In addition, residents who lived at least 15 years at a distance of 3-7 m also experienced more hearing loss. One cause of hearing loss is due to exposure to high noise and for a long time and will damage the hair cells in the cochlea, causing hearing loss. If noise exposure continues and for a long period of time damage to hair cells will be permanent and cannot return to normal. Conclusion: There needs to be a policy from the government in determining the minimum limit of the distance of the house to the railroad tracks. In addition, it is necessary to install a barrier near people’s homes to reduce noise.


Author(s):  
Michael Reid ◽  
Tony File

The U.S. electric utility industry continues to undergo dramatic and accelerating transformation. Reliability and resiliency are a key focus. A number of important issues including cyber and physical security challenges, aging infrastructure, and low natural gas prices continue to be of concern. Significant advances in technology, and prolonged regulatory uncertainty are also contributing factors. Electric utilities are now making substantial investment in renewable resources and other technologies needed for renewables integration. This means a reduction in investment in generation assets and an increase in the transmission and distribution grids. There is also increased investment in providing customers with solutions to lower their costs, reduce their carbon footprint and provide control over their energy management. The transformation ultimately demands significant increases in power plant generation operating capabilities and higher levels of equipment reliability while reducing O&M and capital budgets. Achieving higher levels of equipment reliability, with such tightening budget and resource constraints, requires a very disciplined approach to maintenance and an optimized mix of the following maintenance practices: • Preventative (time-based) • Predictive (condition-based) • Reactive (run-to-failure) • Proactive (combination of 1, 2 and 3 + root cause failure analysis) Preventive maintenance (PM) is planned maintenance actions taken to ensure equipment is capable of performing its required functions. PM tasks are generally time-based, depending on the availability of condition monitoring data through a predictive maintenance (PdM) program. Traditionally, PdM is largely performed by maintenance technicians in the field with handheld devices. Resource constraints usually mean that often weeks or even months elapsed between readings on the same piece of equipment. This approach has limitations with data volume, velocity, variety, and veracity. Significant recent advances in sensor and technology associated with the Industrial Internet of Things (IIoT) have enabled the transformation of critical power plant assets such as steam turbines, combustion turbines, generators, and large balance-of-plant equipment into smart, connected power plant assets. These enhanced assets, in conjunction with analysis and visualization software, provide a comprehensive on-line conditioning monitoring solution that enables both a reduction in time-based PM tasks and also automation of PdM tasks. This paper describes an approach by Duke Energy to apply smart, connected power plant assets to greatly enhance its fossil generation equipment reliability program and processes. It will outline the value that is currently being realized and will also examine additional opportunities.


1994 ◽  
Vol 79 (3) ◽  
pp. 1203-1216 ◽  
Author(s):  
Anders Kjellberg ◽  
Björn Sköldström ◽  
Maria Tesarz ◽  
Margareta Dallner

Tension of the forehead increases as a response to unpleasant stimuli. In three experiments EMG activity in corrugator muscle was measured to test this response as an indicator of noise annoyance. In Exp. 1 ( n = 24) monotonic sound level-response functions were obtained for four levels of 100- and 1000-Hz tones. In Exp. 2 ( n = 20) recordings were made during work with a simple and a difficult task in a group of women and a group of men. Larger responses were obtained during the difficult task, especially during noise exposure. The response was much larger for the women. Exp. 3 ( n = 24) showed that the sex difference was unaffected by a correction for differences in maximum level of corrugator response. Rated annoyance was a linear function of log EMG.


2005 ◽  
Vol 36 (2) ◽  
pp. 17-20 ◽  
Author(s):  
Foluwasayo E. Ologe ◽  
Emmanuel O. Okoro ◽  
Tanimola M. Akande

We studied the level of music loudness to which operators of music recording/retail centre were exposed in order to determine their risk of work-related hearing loss. A survey of consenting operators of music recording centres on six main streets selected by simple random sampling at different locations of the town was carried out using a structured questionnaire. The sound level of the music from the music player speakers in each centre was measured using a sound level meter (Testo 815) duly calibrated with a sound level meter calibrator (Testo 0554.0009). Results were analyzed by simple descriptive statistics. The study involved 79 mainly male young adults aged 27.7 ± 6.8 years (SD). The measured sound levels in the centres ranged from 86-104dBA; with a mean of 96 ± 2.5dBA(SD). Exposure to this music loudness was for an average of 9 hours daily for an employment period averaging about 5 years. Thirty percent of the study population reduced music loudness by turning down the volume; 6.3% sat at six or more metres from the speakers; 10% used ear plugs occasionally and 7.6% had hearing assessment at some stage prior to the present study. The level of noise exposure of this population of young males is in excess of the threshold associated with irreversible hearing loss, and protection measures were less than optimal.


Sign in / Sign up

Export Citation Format

Share Document