A 0.016 mV/mA Cross-Regulation 5-Output SIMO DC–DC Buck Converter Using Output-Voltage-Aware Charge Control Scheme

2018 ◽  
Vol 33 (11) ◽  
pp. 9619-9630 ◽  
Author(s):  
Ngoc-Son Pham ◽  
Taegeun Yoo ◽  
Tony Tae-Hyoung Kim ◽  
Chan-Gun Lee ◽  
Kwang-Hyun Baek
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5911
Author(s):  
Hsiao-Hsing Chou ◽  
Hsin-Liang Chen

This paper presents a buck converter with a novel constant frequency controlled technique, which employs the proposed frequency detector and adaptive on-time control (AOT) logic to lock the switching frequency. The control scheme, design concept, and circuit realization are presented. In contrast to a complex phase lock loop (PLL), the proposed scheme is easy to implement. With this novel technique, a buck converter is designed to produce an output voltage of 1.0–2.5 V at the input voltage of 3.0–3.6 V and the maximum load current of 500 mA. The proposed scheme was verified using SIMPLIS and MathCAD. The simulation results show that the switching frequency variation is less than 1% at an output voltage of 1.0–2.5 V. Furthermore, the recovery time is less than 2 μs for a step-up and step-down load transient. The circuit will be fabricated using UMC 0.18 μm 1P6M CMOS processes. The control scheme, design concept and circuit realization are presented in this paper.


2021 ◽  
Vol 10 (4) ◽  
pp. 1856-1863
Author(s):  
Mini P. Varghese ◽  
A. Manjunatha ◽  
T. V. Snehaprabha

Voltage regulator modules (VRM) need to have low output voltage ripple and tight efficiency to power advanced microprocessors. This paper explains a phase shedding technique to enhance efficiency and its impact on output voltage ripple. In this study, analysis was done on a 4-phase buck converter which is having an input voltage of 45-65 V and delivers an output of 9 V, 12A with a switching frequency of 200Khz. The phase shedding control scheme is suitable for applications such as power sources for programmable logic controllers, which is a part of SCADA systems, which requires a low voltage and high current power supply. Working of a multiphase buck converter with phase shedding is modelled and verified using Matlab/Simulink software. The simulation results show the effect of the phase shedding technique on efficiency in varying load conditions and the effect of an increase of the voltage ripple at the output.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1886
Author(s):  
Younghoon Cho ◽  
Paul Jang

Fly-buck converter is a multi-output converter with the structure of a synchronous buck converter structure on the primary side and a flyback converter structure on the secondary side, and can be utilized in various applications due to its many advantages. In terms of control, the primary side of the fly-buck converter has the same structure as a synchronous buck converter, allowing the constant-on-time (COT) control to be applied to the fly-buck converter. However, due to the inherent energy transfer principle, the primary-side output voltage regulation of COT controlled fly-buck converters may be poor, which can deteriorate the overall converter performance. Therefore, the primary output capacitor must be carefully designed to improve the voltage regulation characteristics. In this paper, a theoretical analysis of the output voltage regulation in COT controlled fly-buck converter is conducted, and based on this, a design guideline for the primary output capacitor considering the output voltage regulation is presented. The validity of the analysis and design guidelines was verified using a 5 W prototype of the COT controlled fly-buck converter for telecommunication auxiliary power supply.


2012 ◽  
Vol 229-231 ◽  
pp. 2209-2212
Author(s):  
Bao Bin Liu ◽  
Wei Zhou

Logic-based switching adaptive control scheme is proposed for the model of DC-DC buck converter in presence of uncertain parameters and power supply disturbance. All uncertain parameters and the disturbance are estimated together through constructing Lyapunov function. And a switching mechanism is used to ensure global asymptotic stability of the closed-loop system. The results of simulation show that even if there are multiple unknown parameters in the small-signal model, the control system of DC-DC buck converter can estimate unknown parameters quickly and accurately.


Author(s):  
Habibullah Salim ◽  
Irma Husnaini ◽  
Asnil Asnil

This research aims to make buck converter prototype for PLTS system by using fuzzy logic controller. Buck converter is required in the PLTS system if the required unidirectional voltage is smaller than the output voltage of the solar cell. Buck converter used to convert 24 Volt dc voltage to 12 Volt dc with 60 watt capability. While fuzzy logic controller is used to improve buck converter performance based on pulse generation technique for switching. The application of fuzzy logic method is expected to improve the performance of the system by maintaining the stability of buck converter output voltage of 12 volts and reduce the output ripple value. Atmega8535 microcontroller is used to generate PWM pulses for switching on power circuits. The results obtained from the test using a 100 Ohm 5 Watt load obtained the buck converter output voltage of 12.4 Volt.


Sign in / Sign up

Export Citation Format

Share Document