A Magnetically Enhanced Inductive Discharge Chamber for Electric Propulsion Applications

2008 ◽  
Vol 36 (5) ◽  
pp. 2130-2140 ◽  
Author(s):  
J.E. Foster ◽  
E.D. Gillman
2020 ◽  
Vol 17 (35) ◽  
pp. 560-568
Author(s):  
Vladislav V. NIGMATZYANOV ◽  
Veniamin A. POGODIN ◽  
Lev N. RABINSKIY ◽  
Sergey A. SITNIKOV ◽  
Thant ZIN HEIN

Electric rocket engines are widely used in space technology. Furthermore, at present, electric propulsion engines are also used as mid-flight engines for flights in interplanetary space. On modern spacecraft, the following types of electric propulsion are mostly used: SPT and grid ion thruster. When using these engines as sustainers, it is important is to increase the total power for obtaining the required thrust and specific impulse. With an increase in total power, the volume of the discharge chamber increases, which leads to technological difficulties in the manufacture of discharge chambers from ceramic materials. Thus, the task of finding alternative ceramic materials is relevant and necessary in the development of high-frequency ion thrusters. The article discusses the issues of creating a composite material based on woven quartz materials and organosilicon binder as a precursor filled with silicon nitride for the manufacture of gas discharge chamber (GDC) of high-frequency ion thruster (RFIT). By thermos-gravimetric analysis, a thermosetting binder, which meets the requirements of vibration resistance and electromagnetic permeability of GDC in the megahertz range, was selected. Based on the binder filled with silicon nitride powder, reinforced by quartz woven fabrics, manufactured GDC. The resulting product was tested as part of the laboratory electric propulsion device with a diameter of 100 mm and power of 200W.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012115
Author(s):  
M V Isupov

Abstract New experimental data on the plasma density profiles have been obtained for a low-frequency (100 kHz) distributed ferromagnetic enhanced inductive plasma source at different locations of inductive discharges. An ability to control the plasma density profiles in a large gas discharge chamber in order to achieve a uniform treatment of a substrate is demonstrated. The differences between the obtained results and literature data for a distributed ferromagnetic enhanced inductive plasma source combined with a radio-frequency inductive discharge are discussed.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


2020 ◽  
pp. 89-94 ◽  
Author(s):  
Ekaterina V. Lovlya ◽  
Oleg A. Popov

RF inductor power losses of ferrite-free electrode-less low pressure mercury inductively-coupled discharges excited in closed-loop dielectric tube were studied. The modelling was made within the framework of low pressure inductive discharge transformer model for discharge lamps with tubes of 16, 25 and 38 mm inner diam. filled with the mixture of mercury vapour (7.5×10–3 mm Hg) and argon (0.1, 0.3 and 1.0 mm Hg) at RF frequencies of 1, 7; 3.4 and 5.1 MHz and plasma power of (25–500) W. Discharges were excited with the help of the induction coil of 3, 4 and 6 turns placed along the inner perimeter of the closed-loop tube. It was found that the dependence of coil power losses, Pcoil, on the discharge plasma power, Ppl, had the minimum while Pcoil decreased with RF frequency, tube diameter and coil number of turns. The modelling results were found in good qualitative agreement with the experimental data; quantitative discrepancies are believed to be due skin-effect and RF electric field radial inhomogeneity that were not included in discharge modelling.


Sign in / Sign up

Export Citation Format

Share Document