Modeling of Streamer Dynamics in Atmospheric-Pressure Air: Influence of Rise Time of Applied Voltage Pulse on Streamer Parameters

2016 ◽  
Vol 44 (6) ◽  
pp. 899-902 ◽  
Author(s):  
Natalia Yu. Babaeva ◽  
George V. Naidis
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elmar Slikboer ◽  
James Walsh

AbstractThe interaction between an argon plasma jet excited using microsecond duration voltage pulses and a liquid target was examined using Thomson scattering to quantify the temporal evolution of the electron density and temperature. The electrical resistance between a liquid target and the electrical ground was varied from 1 to $$680\, \text {k}\Omega $$ 680 k Ω to mimic different conductivity liquids while the influence of the varying electrical properties on the electron dynamics within the plasma were examined. It was demonstrated that the interaction between the plasma jet and a liquid target grounded via a high resistance resulted in typical dielectric barrier discharge behaviour, with two discharge events per applied voltage pulse. Under such conditions, the electron density and temperature reached a peak of $$1\cdot 10^{15}\, \text {cm}^{-3}$$ 1 · 10 15 cm - 3 and 3.4 eV, respectively; with both rapidly decaying over several hundreds of nanoseconds. For liquid targets grounded via a low resistance, the jet behaviour transitioned to a DC-like discharge, with a single breakdown event being observed and sustained throughout the duration of each applied voltage pulse. Under such conditions, electron densities of $$2{-}3 \cdot 10^{15}\, \text {cm}^{-3}$$ 2 - 3 · 10 15 cm - 3 were detected for several microseconds. The results demonstrate that the electron dynamics in a pulsed argon plasma jet are extremely sensitive to the electrical characteristics of the target, which in the case of water, can evolve during exposure to the plasma.


2018 ◽  
Vol 20 (27) ◽  
pp. 18226-18232 ◽  
Author(s):  
Ming-Lun Wu ◽  
Guan-Yu Chen ◽  
Ting-An Shih ◽  
Chin-Wei Lu ◽  
Hai-Ching Su

Tunable correlated color temperature of electroluminescence from white light-emitting electrochemical cells based on adjusting the voltage pulse period.


2018 ◽  
Vol 36 (2) ◽  
pp. 186-194 ◽  
Author(s):  
D.A. Sorokin ◽  
V.F. Tarasenko ◽  
Cheng Zhang ◽  
I.D. Kostyrya ◽  
Jintao Qiu ◽  
...  

AbstractThe parameters of X-ray radiation and runaway electron beams (RAEBs) generated at long-pulse discharges in atmospheric-pressure air were investigated. In the experiments, high-voltage pulses with the rise times of 500 and 50 ns were applied to an interelectrode gap. The gap geometry provided non-uniform distribution of the electric field strength. It was founded that at the voltage pulse rise time of 500 ns and the maximum breakdown voltage Um for 1 cm-length gap, a duration [full width at half maximum (FWHM)] of a RAEB current pulse shrinks to 0.1 ns. A decrease in the breakdown voltage under conditions of a diffuse discharge leads to an increase in the FWHM duration of the electron beam current pulse up to several nanoseconds. It was shown that when the rise time of the voltage pulse is of 500 ns and the diffuse discharge occurs in the gap, the FWHM duration of the X-ray radiation pulse can reach ≈100 ns. It was established that at a pulse-periodic diffuse discharge fed by high-voltage pulses with the rise time of 50 ns, an energy of X-ray quanta and their number increase with increasing breakdown voltage. Wherein the parameter Um/pd is saved.


Hyomen Kagaku ◽  
2003 ◽  
Vol 24 (3) ◽  
pp. 187-193
Author(s):  
Jooyoung KIM ◽  
Hironaga UCHIDA ◽  
Kazuhiro YOSHIDA ◽  
Yoshiaki HASHIMOTO ◽  
Kazuhiro NISHIMURA ◽  
...  

2014 ◽  
Vol 42 (10) ◽  
pp. 2414-2415 ◽  
Author(s):  
Tom Huiskamp ◽  
Hans Hoft ◽  
Manfred Kettlitz ◽  
A. J. M. Guus Pemen

2011 ◽  
Vol 328-330 ◽  
pp. 502-506 ◽  
Author(s):  
Ning Ma ◽  
Wen Ji Xu ◽  
Ze Fei Wei ◽  
Gui Bing Pang

In this paper the characteristics of pulse electrochemical deburring (PECD) is analyzed through a developed mathematical model and main influencing factors such as applied voltage, pulse duty factor, deburring time, initial burr height and initial interelectrode gap on burr height have been analyzed. The paper also highlights the scheme of the developed PECD system designed to operate within the parametric limits. The calculated results obtained from the mathematical model are found to be approximately consistent with the experimental results. The results show that initial burr height h0=0.057mm is removed, and the fillet radius R=0.248mm is obtained. The present paper through various parametric studies will act as a guideline for the operation of a PECD system.


2020 ◽  
Vol 11 (11) ◽  
pp. 17-27
Author(s):  
Vadim V. VOEVODIN ◽  
◽  
Marina V. SOKOLOVA ◽  
Viktor R. SOLOV’YEV ◽  
Nikolay Yu. LYSOV ◽  
...  

The results from an experimental study of impulse surface discharge occurring in an electrode system containing a dielectric plate are presented. On one of its sides, the plate had a corona-producing electrode made of 50 mm thick copper foil grounded through a current shunt for measuring the discharge current. On its other side, the plate had a high-voltage electrode, to which the voltage from a pulse generator was applied. The article presents the results from measurements of the initial voltage and the sizes of the surface discharge area in air when applying single voltage pulses with different pulse front steepness in the range 0,1–3,4 kV/ms and amplitude in the range 7–15 kV. The measurements were carried out for different dielectric barrier materials with the e values from 2 to 35. The dielectric barrier thickness was 0,9–1,8 mm. The study results have shown that the initial surface discharge ignition voltage depends essentially on the voltage pulse parameters, whereas the barrier characteristics have a weaker effect on this voltage. It has been determined that the discharge has different discharge zone length and different structure depending on the dielectric barrier properties and applied voltage parameters. The streamer zone sizes decrease with increasing the barrier material e value at the same voltage pulse steepness and increase with increasing the steepness for each barrier material. The data obtained for a wide range of external conditions can be used in numerical modeling of discharge.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 169 ◽  
Author(s):  
Mahbubur Rahman ◽  
Pasan Hettiarachchi ◽  
Vernon Cooray ◽  
Joseph Dwyer ◽  
Vladimir Rakov ◽  
...  

We present observations of X-rays from laboratory sparks created in the air at atmospheric pressure by applying an impulse voltage with long (250 µs) rise-time. X-ray production in 35 and 46 cm gaps for three different electrode configurations was studied. The results demonstrate, for the first time, the production of X-rays in gaps subjected to switching impulses. The low rate of rise of the voltage in switching impulses does not significantly reduce the production of X-rays. Additionally, the timing of the X-ray occurrence suggests the possibility that the mechanism of X-ray production by sparks is related to the collision of streamers of opposite polarity.


Sign in / Sign up

Export Citation Format

Share Document