Pulsatile shear stress and high glucose concentrations induced reactive oxigen species production in endothelial cells

Author(s):  
J. Q. Yu ◽  
L. K. Chin ◽  
Y. Fu ◽  
T. Yu ◽  
K. Q. Luo ◽  
...  
Author(s):  
Steven F. Kemeny ◽  
Alisa Morss Clyne

Endothelial cells line the walls of all blood vessels, where they maintain homeostasis through control of vascular tone, permeability, inflammation, and the growth and regression of blood vessels. Endothelial cells are mechanosensitive to fluid shear stress, elongating and aligning in the flow direction [1–2]. This shape change is driven by rearrangement of the actin cytoskeleton and focal adhesions [2]. Hyperglycemia, a hallmark of diabetes, affects endothelial cell function. High glucose has been shown to increase protein kinase C, formation of glucose-derived advanced glycation end-products, and glucose flux through the aldose reductase pathway within endothelial cells [3]. These changes are thought to be related to increased reactive oxygen species production [4]. While endothelial cell mechanics have been widely studied in healthy conditions, many disease states have yet to be explored. Biochemical alterations related to high glucose may alter endothelial cell mechanics.


2008 ◽  
Vol 41 (12) ◽  
pp. 2781-2785 ◽  
Author(s):  
Richard Daculsi ◽  
Maritie Grellier ◽  
Murielle Rémy ◽  
Reine Bareille ◽  
Dorothée Pierron ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jeremy Ortillon ◽  
Jean-Christophe Le Bail ◽  
Elise Villard ◽  
Bertrand Léger ◽  
Bruno Poirier ◽  
...  

Background and AimsThe YAP/TAZ signaling is known to regulate endothelial activation and vascular inflammation in response to shear stress. Moreover, YAP/TAZ signaling plays a role in the progression of cancers and renal damage associated with diabetes. However, whether YAP/TAZ signaling is also implicated in diabetes-associated vascular complications is not known.MethodsThe effect of high glucose on YAP/TAZ signaling was firstly evaluated in vitro on endothelial cells cultured under static conditions or subjected to shear stress (either laminar or oscillatory flow). The impact of diabetes on YAP/TAZ signaling was additionally assessed in vivo in db/db mice.ResultsIn vitro, we found that YAP was dephosphorylated/activated by high glucose in endothelial cells, thus leading to increased endothelial inflammation and monocyte attachment. Moreover, YAP was further activated when high glucose was combined to laminar flow conditions. YAP was also activated by oscillatory flow conditions but, in contrast, high glucose did not exert any additional effect. Interestingly, inhibition of YAP reduced endothelial inflammation and monocyte attachment. Finally, we found that YAP is also activated in the vascular wall of diabetic mice, where inflammatory markers are also increased.ConclusionWith the current study we demonstrated that YAP signaling is activated by high glucose in endothelial cells in vitro and in the vasculature of diabetic mice, and we pinpointed YAP as a regulator of high glucose-mediated endothelial inflammation and monocyte attachment. YAP inhibition may represent a potential therapeutic opportunity to improve diabetes-associated vascular complications.


2008 ◽  
Vol 295 (5) ◽  
pp. H1966-H1973 ◽  
Author(s):  
Gyeong In Mun ◽  
Sang Mi An ◽  
Heonyong Park ◽  
Hanjoong Jo ◽  
Yong Chool Boo

Elevated blood glucose and free fatty acids induce oxidative stress associated with the incidence of cardiovascular disease. In contrast, laminar shear stress (LSS) plays a critical role in maintaining vascular health. The present study examined the mechanism for the antioxidant effect of LSS attenuating the oxidative stress induced by high glucose (HG) and arachidonic acid (AA) in human umbilical vein endothelial cells. HG and AA synergistically decreased cell viability and increased glutathione (GSH) oxidation and lipid peroxidation. The lipid peroxidation was markedly prevented by LSS as well as tetrahydrobiopterin (BH4) and GSH. LSS increased BH4 and GSH contents, and expression of GTP cyclohydrolase-1 and glutamylcysteine ligase (GCL) involved in their biosynthesis. Inhibition of GCL activity by DL-buthionine-(S,R)-sulfoximine and small-interfering RNA-mediated knockdown of GCL lessened the antioxidant effect of LSS. Therefore, it is suggested that LSS enhances antioxidant capacity of endothelial cells and thereby attenuates the oxidative stress caused by cardiovascular risk factors.


Sign in / Sign up

Export Citation Format

Share Document