scholarly journals Extreme Temperature Operation of Ultra-Wide Bandgap AlGaN High Electron Mobility Transistors

2019 ◽  
Vol 32 (4) ◽  
pp. 473-477 ◽  
Author(s):  
Patrick H. Carey ◽  
Stephen J. Pearton ◽  
Fan Ren ◽  
Albert G. Baca ◽  
Brianna A. Klein ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 635
Author(s):  
Idriss Abid ◽  
Jash Mehta ◽  
Yvon Cordier ◽  
Joff Derluyn ◽  
Stefan Degroote ◽  
...  

High power electronics using wide bandgap materials are maturing rapidly, and significant market growth is expected in a near future. Ultra wide bandgap materials, which have an even larger bandgap than GaN (3.4 eV), represent an attractive choice of materials to further push the performance limits of power devices. In this work, we report on the fabrication of AlN/AlGaN/AlN high-electron mobility transistors (HEMTs) using 50% Al-content on the AlGaN channel, which has a much wider bandgap than the commonly used GaN channel. The structure was grown by metalorganic chemical vapor deposition (MOCVD) on AlN/sapphire templates. A buffer breakdown field as high as 5.5 MV/cm was reported for short contact distances. Furthermore, transistors have been successfully fabricated on this heterostructure, with low leakage current and low on-resistance. A remarkable three-terminal breakdown voltage above 4 kV with an off-state leakage current below 1 μA/mm was achieved. A regrown ohmic contact was used to reduce the source/drain ohmic contact resistance, yielding a drain current density of about 0.1 A/mm.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 225
Author(s):  
A. Revathy ◽  
C. S. Boopathi ◽  
Osamah Ibrahim Khalaf ◽  
Carlos Andrés Tavera Romero

The wider bandgap AlGaN (Eg > 3.4 eV) channel-based high electron mobility transistors (HEMTs) are more effective for high voltage operation. High critical electric field and high saturation velocity are the major advantages of AlGaN channel HEMTs, which push the power electronics to a greater operating regime. In this article, we present the DC characteristics of 0.8 µm gate length (LG) and 1 µm gate-drain distance (LGD) AlGaN channel-based high electron mobility transistors (HEMTs) on ultra-wide bandgap β-Ga2O3 Substrate. The β-Ga2O3 substrate is cost-effective, available in large wafer size and has low lattice mismatch (0 to 2.4%) with AlGaN alloys compared to conventional SiC and Si substrates. A physics-based numerical simulation was performed to investigate the DC characteristics of the HEMTs. The proposed HEMT exhibits sheet charge density (ns) of 1.05 × 1013 cm−2, a peak on-state drain current (IDS) of 1.35 A/mm, DC transconductance (gm) of 277 mS/mm. The ultra-wide bandgap AlGaN channel HEMT on β-Ga2O3 substrate with conventional rectangular gate structure showed 244 V off-state breakdown voltage (VBR) and field plate gate device showed 350 V. The AlGaN channel HEMTs on β-Ga2O3 substrate showed an excellent performance in ION/IOFF and VBR. The high performance of the proposed HEMTs on β-Ga2O3 substrate is suitable for future portable power converters, automotive, and avionics applications.


2021 ◽  
pp. 108050
Author(s):  
Maria Glória Caño de Andrade ◽  
Luis Felipe de Oliveira Bergamim ◽  
Braz Baptista Júnior ◽  
Carlos Roberto Nogueira ◽  
Fábio Alex da Silva ◽  
...  

Author(s):  
Yu-Chen Lai ◽  
Yi-Nan Zhong ◽  
Ming-Yan Tsai ◽  
Yue-Ming Hsin

AbstractThis study investigated the gate capacitance and off-state characteristics of 650-V enhancement-mode p-GaN gate AlGaN/GaN high-electron-mobility transistors after various degrees of gate stress bias. A significant change was observed in the on-state capacitance when the gate stress bias was greater than 6 V. The corresponding threshold voltage exhibited a positive shift at low gate stress and a negative shift when the gate stress was greater than 6 V, which agreed with the shift observation from the I–V measurement. Moreover, the off-state leakage current increased significantly after the gate stress exceeded 6 V during the off-state characterization although the devices could be biased up to 1000 V without breakdown. The increase in the off-state leakage current would lead to higher power loss.


Sign in / Sign up

Export Citation Format

Share Document