Virtual Metrology for Etch Profile in Silicon Trench Etching with SF6/O2/Ar Plasma

Author(s):  
Jeong Eun Choi ◽  
Hyoeun Park ◽  
Yongho Lee ◽  
Sang Jeen Hong
2012 ◽  
Vol 1 (5) ◽  
pp. P233-P236 ◽  
Author(s):  
Tea Young Lee ◽  
Eun Ho Kim ◽  
Il Hoon Lee ◽  
Chee Won Chung

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3005
Author(s):  
Jiwon Kwon ◽  
Sangwon Ryu ◽  
Jihoon Park ◽  
Haneul Lee ◽  
Yunchang Jang ◽  
...  

In the semiconductor etch process, as the critical dimension (CD) decreases and the difficulty of the process control increases, in-situ and real-time etch profile monitoring becomes important. It leads to the development of virtual metrology (VM) technology, one of the measurement and inspection (MI) technology that predicts the etch profile during the process. Recently, VM to predict the etch depth using plasma information (PI) variables and the etch process data based on the statistical regression method had been developed and demonstrated high performance. In this study, VM using PI variables, named PI-VM, was extended to monitor the etch profile and investigated the role of PI variables and features of PI-VM. PI variables are obtained through analysis on optical emission spectrum data. The features in PI-VM are investigated in terms of plasma physics and etch kinetics. The PI-VM is developed to monitor the etch depth, bowing CD, etch depth times bowing CD (rectangular model), and etch area model (non-rectangular model). PI-VM for etch depth and bowing CD showed high prediction accuracy of R-square value (R2) 0.8 or higher. The rectangular and non-rectangular etch area model PI-VM showed prediction accuracy R2 of 0.78 and 0.49, respectively. The first trial of virtual metrology to monitor the etch profile will contribute to the development of the etch profile control technology.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1595
Author(s):  
Nomin Lim ◽  
Yeon Sik Choi ◽  
Alexander Efremov ◽  
Kwang-Ho Kwon

This research work deals with the comparative study of C6F12O + Ar and CF4 + Ar gas chemistries in respect to Si and SiO2 reactive-ion etching processes in a low power regime. Despite uncertain applicability of C6F12O as the fluorine-containing etchant gas, it is interesting because of the liquid (at room temperature) nature and weaker environmental impact (lower global warming potential). The combination of several experimental techniques (double Langmuir probe, optical emission spectroscopy, X-ray photoelectron spectroscopy) allowed one (a) to compare performances of given gas systems in respect to the reactive-ion etching of Si and SiO2; and (b) to associate the features of corresponding etching kinetics with those for gas-phase plasma parameters. It was found that both gas systems exhibit (a) similar changes in ion energy flux and F atom flux with variations on input RF power and gas pressure; (b) quite close polymerization abilities; and (c) identical behaviors of Si and SiO2 etching rates, as determined by the neutral-flux-limited regime of ion-assisted chemical reaction. Principal features of C6F12O + Ar plasma are only lower absolute etching rates (mainly due to the lower density and flux of F atoms) as well as some limitations in SiO2/Si etching selectivity.


Author(s):  
Natalie Gentner ◽  
Andreas Kyek ◽  
Yao Yang ◽  
Mattia Carletti ◽  
Gian Antonio Susto

2011 ◽  
Vol 109 (2) ◽  
pp. 023301 ◽  
Author(s):  
J. Henriques ◽  
E. Tatarova ◽  
C. M. Ferreira
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document