Efficient Fault-tolerant Information Barrier Coverage in Internet of Things

Author(s):  
Shibo He ◽  
Jiming Chen ◽  
Yuanchao Shu ◽  
Xianbin Cui ◽  
Kun Shi ◽  
...  
2020 ◽  
Vol 18 (1) ◽  
pp. 57-80 ◽  
Author(s):  
Asad Javed ◽  
Jérémy Robert ◽  
Keijo Heljanko ◽  
Kary Främling

AbstractThe evolution of Internet of Things (IoT) technology has led to an increased emphasis on edge computing for Cyber-Physical Systems (CPS), in which applications rely on processing data closer to the data sources, and sharing the results across heterogeneous clusters. This has simplified the data exchanges between IoT/CPS systems, the cloud, and the edge for managing low latency, minimal bandwidth, and fault-tolerant applications. Nonetheless, many of these applications administer data collection on the edge and offer data analytic and storage capabilities in the cloud. This raises the problem of separate software stacks between the edge and the cloud with no unified fault-tolerant management, hindering dynamic relocation of data processing. In such systems, the data must also be preserved from being corrupted or duplicated in the case of intermittent long-distance network connectivity issues, malicious harming of edge devices, or other hostile environments. Within this context, the contributions of this paper are threefold: (i) to propose a new Internet of Things Edge-Cloud Federation (IoTEF) architecture for multi-cluster IoT applications by adapting our earlier Cloud and Edge Fault-Tolerant IoT (CEFIoT) layered design. We address the fault tolerance issue by employing the Apache Kafka publish/subscribe platform as the unified data replication solution. We also deploy Kubernetes for fault-tolerant management, combined with the federated scheme, offering a single management interface and allowing automatic reconfiguration of the data processing pipeline, (ii) to formulate functional and non-functional requirements of our proposed solution by comparing several IoT architectures, and (iii) to implement a smart buildings use case of the ongoing Otaniemi3D project as proof-of-concept for assessing IoTEF capabilities. The experimental results conclude that the architecture minimizes latency, saves network bandwidth, and handles both hardware and network connectivity based failures.


Author(s):  
Oluwole K. Bowoto ◽  
Bankole I. Oladapo ◽  
Prince A. Nimako ◽  
Francis T. Omigbodun ◽  
Omonigho A. Emenuvwe

New developments in broadcast technology, such as the ad hoc wireless network and the detection devices that work, enable daily connections to the Internet, commonly referred to as the Internet of Things (IoT). IoT saw this as a support for the development of creative and contextual services and applications. The service can respond to the user's environment and preferences. Finite state machines are recently making waves when the issue of self-controlling systems come into the picture of designs. This research focuses on the design of a fault tolerant system that controls random failures impressed on the network. The method comprises of diodes, Resistors, Optocouplers, ESP8266 WI-FI Module Webpage with button, and two Arduinos which in effect will determine iteratively who to handle a failure at hand modelled as when the button on the webpage is pressed. In this work, a Heartbeat Detection and Monitoring System will be made using Arduino that detect the electrical state using the Pulse Sensor and show the readings in Beats Per Minute on the LED connected a microcontroller. It sends the texts to the server using the Wi-Fi module ESP8266 to signals can be monitored from the monitoring zone via the internet.   This is reflected by the declaration of a master state by either of two Arduinos whenever the push button is pressed as observed on the codes. The result obtained from the research shows apparently, the state of the fault tolerance system none power deny of heartbeat condition connected to the LED.


2020 ◽  
Vol 29 (07n08) ◽  
pp. 2040019
Author(s):  
Zixia Sang ◽  
Rengcun Fang ◽  
He Lei ◽  
Jiong Yan ◽  
Dongjun Yang ◽  
...  

The distribution energy router (DER) is the core of the interacted and interconnected micro grid in future distribution network, which fully meets the needs of the ubiquitous power internet of things (IOT) based future distribution network. The reliability of micro grid which applies the DER is highly related to its cascaded full-bridge converters. With the redundant full-bridge converters and IOT technology, the DER can stand the component failures, hence improve the robustness of the DER as well as the future interacted and interconnected micro grid. For a ubiquitous power IOT technology based DER, this paper proposes a redundancy design for fault tolerant strategy. Several redundancy designs are discussed in detail with operational principles and control strategies. The proposed redundancy design is implemented on the power circuit of one phase for DER consists of a nine-level cascaded full-bridge converter in Saber simulation platform, and the simulation results prove that the redundancy design can minimize the customer’s power interrupt time and the consequent damages to the system.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3430 ◽  
Author(s):  
Roberto Casado-Vara ◽  
Zita Vale ◽  
Javier Prieto ◽  
Juan Corchado

The monitoring of the Internet of things networks depends to a great extent on the availability and correct functioning of all the network nodes that collect data. This network nodes all of which must correctly satisfy their purpose to ensure the efficiency and high quality of monitoring and control of the internet of things networks. This paper focuses on the problem of fault-tolerant maintenance of a networked environment in the domain of the internet of things. Based on continuous-time Markov chains, together with a cooperative control algorithm, a novel feedback model-based predictive hybrid control algorithm is proposed to improve the maintenance and reliability of the internet of things network. Virtual sensors are substituted for the sensors that the algorithm predicts will not function properly in future time intervals; this allows for maintaining reliable monitoring and control of the internet of things network. In this way, the internet of things network improves its robustness since our fault tolerant control algorithm finds the malfunction nodes that are collecting incorrect data and self-correct this issue replacing malfunctioning sensors with new ones. In addition, the proposed model is capable of optimising sensor positioning. As a result, data collection from the environment can be kept stable. The developed continuous-time control model is applied to guarantee reliable monitoring and control of temperature in a smart supermarket. Finally, the efficiency of the presented approach is verified with the results obtained in the conducted case study.


2020 ◽  
Vol 10 (21) ◽  
pp. 7699
Author(s):  
Shin-Hung Pan ◽  
Shu-Ching Wang

Because the Internet of Things (IoT) can provide a global service network through various smart devices, the IoT has been widely used in smart transportation, smart cities, smart healthcare, and factory automation through the Internet connection. With the large-scale establishment and 5G (fifth generation) wireless networks, the cellular Internet of Things (CIoT) will continue to be developed and applied to a wide range of applications. In order to provide a reliable application of CIoT, a safe and reliable network topology MECIoT is proposed in this study. To improve the reliability and fault-tolerant capability of the network proposed, the problem of reaching agreement should be revisited. Therefore, the applications in the system can still be performed correctly even if some processing units (PUs) in the system have failed. In this study, a new protocol is proposed to allow all normal PUs in MECIoT to reach an agreement with the minimum amount of data exchanges required and the maximum number of failed PUs allowed in MECIoT. In the end, the optimality of the protocol has been proven by mathematical method.


Sign in / Sign up

Export Citation Format

Share Document