In vitro experimental system for ultrasonic estimation of myocardial elasticity

Author(s):  
Tomohiko Tanaka ◽  
Kunio Hashiba
1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S223-S246 ◽  
Author(s):  
C. R. Wira ◽  
H. Rochefort ◽  
E. E. Baulieu

ABSTRACT The definition of a RECEPTOR* in terms of a receptive site, an executive site and a coupling mechanism, is followed by a general consideration of four binding criteria, which include hormone specificity, tissue specificity, high affinity and saturation, essential for distinguishing between specific and nonspecific binding. Experimental approaches are proposed for choosing an experimental system (either organized or soluble) and detecting the presence of protein binding sites. Techniques are then presented for evaluating the specific protein binding sites (receptors) in terms of the four criteria. This is followed by a brief consideration of how receptors may be located in cells and characterized when extracted. Finally various examples of oestrogen, androgen, progestagen, glucocorticoid and mineralocorticoid binding to their respective target tissues are presented, to illustrate how researchers have identified specific corticoid and mineralocorticoid binding in their respective target tissue receptors.


Sarcoma ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaodong Mu ◽  
Christian Isaac ◽  
Trevor Schott ◽  
Johnny Huard ◽  
Kurt Weiss

Osteosarcoma (OS) is the most common primary malignancy of bone. Mortality is determined by the presence of metastatic disease, but little is known regarding the biochemical events that drive metastases. Two murine OS cell lines, K7M2 and K12, are related but differ significantly in their metastatic potentials: K7M2 is highly metastatic whereas K12 displays much less metastatic potential. Using this experimental system, the mammalian target of rapamycin (mTOR) pathway has been implicated in OS metastasis. We also discovered that aldehyde dehydrogenase (ALDH, a stem cell marker) activity is higher in K7M2 cells than K12 cells. Rapamycin treatment reduces the expression and enzymatic activity of ALDH in K7M2 cells. ALDH inhibition renders these cells more susceptible to apoptotic death when exposed to oxidative stress. Furthermore, rapamycin treatment reduces bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) gene expression and inhibits K7M2 proliferation, migration, and invasionin vitro. Inhibition of ALDH with disulfiram correlated with decreased mTOR expression and activity. In conclusion, we provide evidence for interaction between mTOR activity, ALDH activity, and metastatic potential in murine OS cells. Our work suggests that mTOR and ALDH are therapeutic targets for the treatment and prevention of OS metastasis.


2021 ◽  
Author(s):  
Florence Humphrey Urio ◽  
Matilda Mkombachepa ◽  
Gration Rwegasira ◽  
Twilumba Makene ◽  
Billy Ngasala ◽  
...  

Abstract BackgroundMalaria morbidity and mortality, almost entirely from Plasmodium falciparum, are still rampant in Africa: therefore, it is important to study the biology of the parasite and the parasite-host cell interactions. In vitro cultivation of Plasmodium falciparum is most useful for this purpose, as well as for investigating drug resistance and possible new therapies. Here we report that the Trager & Jensen continuous culture of P. falciparum can be established in a laboratory in Tanzania with minimal facilities and with modest expenditure.MethodsAn in vitro set-up of continuous culture of P. falciparum was carried out in 2016 to 2020 at Muhimbili university of health and allied sciences, Dar-es salaam. Parasite samples were obtained from patients with acute malaria, frozen parasites and live cultures. Data was collected and analyzed using GraphPad Prism version 8.ResultsWe have successfully achieved exponential growth of existing strains that are used worldwide, as well as of parasites in clinical samples from patients with acute malaria. In the aim to optimize growth we have compared human serum and bovine serum albumin as components of the culture media. In addition, culture synchronization has been achieved using sorbitol.ConclusionThis experimental system is now available to our institution and to researchers aiming at investigating drug sensitivity and mechanisms of protection against Plasmodium falciparum that accrue from various genes expressed in red cells.


2004 ◽  
Vol 11 (1-2) ◽  
pp. 45-57 ◽  
Author(s):  
Floriana Volpicelli ◽  
Claudia Consales ◽  
Massimiliano Caiazzo ◽  
Luca Colucci-D'Amato ◽  
Carla Perrone-Capano ◽  
...  

We analyzed the molecular mechanisms involved in the acquisition and maturation of dopaminergic (DA) neurons generated in vitro from rat ventral mesencephalon (MES) cells in the presence of mitogens or specific signaling molecules. The addition of basic fibroblast growth factor (bFGF) to MES cells in serum-free medium stimulates the proliferation of neuroblasts but delays DA differentiation. Recombinant Sonic hedgehog (SHH) protein increases up to three fold the number of tyrosine hydroxylase (TH)-positive cells and their differentiation, an effect abolished by anti-SHH antibodies. The expanded cultures are rich in nestin-positive neurons, glial cells are rare, allTH+neurons are DA, and all DA and GABAergic markers analyzed are expressed. Adding ascorbic acid to bFGF/SHH-treated cultures resulted in a further five- to seven-fold enhancement of viable DA neurons. This experimental system also provides a powerful tool to generate DA neurons from single embryos. Our strategy provides an enriched source of MES DA neurons that are useful for analyzing molecular mechanisms controlling their function and for experimental regenerative approaches in DA dysfunction.


Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 195-205
Author(s):  
J. B. L. Bard ◽  
M. K. Bansal ◽  
A. S. A. Ross

This paper examines the role of the extracellular matrix (ECM) in the development of the cornea. After a brief summary of the corneal structure and ECM, we describe evidence suggesting that the differentiation of neural crest (NC) cells into endothelium and fibroblasts is under the control of ocular ECM. We then examine the role of collagen I in stromal morphogenesis by comparing normal corneas with those of homozygous Movl3 mice which do not make collagen I. We report that, in spite of this absence, the cellular morphology of the Movl3 eye is indistinguishable from that of the wild type. In the 16-day mutant stroma, however, the remaining collagens form small amounts of disorganized, thin fibrils rather than orthogonally organized 20 nm-diameter fibrils; a result implying that collagen I plays only a structural role and that its absence is not compensated for. It also suggests that, because these remaining collagens will not form the normal fibrils that they will in vitro, fibrillogenesis in the corneal stroma differs from that elsewhere. The latter part of the paper describes our current work on chick stromal deposition using corneal epithelia isolated with an intact basal lamina that lay down in vitro ∼3μm-thick stromas of organized fibrils similar to that seen in vivo. This experimental system has yielded two unexpected results. First, the amount of collagen and proteoglycans produced by such epithelia is not dependent on whether its substratum is collagenous and we therefore conclude that stromal production by the intact epithelium is more autonomous than hitherto thought. Second, chondroitin sulphate (CS), the predominant proteoglycan, appears to play no role in stromal morphogenesis: epithelia cultured in testicular hyaluronidase, which degrades CS, lay down stromas whose organization and fibrildiameter distribution are indistinguishable from controls. One possible role for CS, however, is as a lubricant which facilitates corneal growth: it could allow fibrils to move over one another without deforming their orthogonal organization. Finally, we have examined the processes of fibrillogenesis in the corneal stroma and conclude that they are different from those elsewhere in the embryo and in vitro, perhaps because there is in the primary stroma an unidentified, highly hydrated ECM macromolecule that embeds the fibrils and that may mediate their morphogenesis.


Author(s):  
Hiroyuki Kuramoto ◽  
Mieko Hamano ◽  
Manami Imai ◽  
Takesi Fujisawa ◽  
Yuko Kamata ◽  
...  

1995 ◽  
Vol 88 (3) ◽  
pp. 319-324 ◽  
Author(s):  
Susan A. Jebb ◽  
Gail R. Goldberg ◽  
Graham Jennings ◽  
Marinos Elia

1. There are few data regarding the accuracy of Hologic QDR-1000W dual-energy X-ray absorptiometry for the measurement of body composition. In two studies, one in an in vitro experimental system using oil and water mixtures and the other in samples of pork meat, the effect of depth and tissue thickness on the measured composition was assessed. In the latter study the measured fat mass was compared with that measured by direct analysis. 2. All data indicated a trend in the measured fat mass with depth, such that more fat was measured at extremes of depth (<10 cm and >25 cm) than at intermediate depths. 3. In samples of meat weighing approximately 55 kg, dual X-ray absorptiometry significantly underestimated the absolute fat mass compared with direct analysis (mean 20.4 ± 1.65%) by 5–8% or 1–4 kg of fat. 4. These findings are of direct relevance to both clinical and research work using this technique to measure body composition, in particular in circumstances in which changes in body composition and/or tissue thickness are anticipated.


1986 ◽  
Vol 72 (6) ◽  
pp. 553-558 ◽  
Author(s):  
Maria Giovanna Martinotti ◽  
Roberto Arione ◽  
Roberto Foà ◽  
Luigi Pegoraro ◽  
Cristina Jemma ◽  
...  

A human acute T lymphoblastic leukemia line (PF-382) was serially transplanted into nude mice. No takes were observed in untreated nude mice, whereas solid tumors were observed in splenectomized and total body, sublethally irradiated mice. The minimal tumor-inducing dose and the latency time remained unchanged after the third and fifth serial transplants. Moreover, leukemic cells recovered from the 8th in vivo passages displayed the same differentiation antigens and chromosomal markers as the in vitro PF-382 cell line used for the first transplant. This stable and well-characterized experimental system could be a new model for T-lymphocyte differentiation and immune-reactivity against human leukemias.


2000 ◽  
Vol 74 (22) ◽  
pp. 10778-10784 ◽  
Author(s):  
Isao Hamaguchi ◽  
Niels-Bjarne Woods ◽  
Ioannis Panagopoulos ◽  
Elisabet Andersson ◽  
Hanna Mikkola ◽  
...  

ABSTRACT The murine embryonal stem (ES) cell virus (MESV) can express transgenes from the long terminal repeat (LTR) promoter/enhancer in undifferentiated ES cells, but expression is turned off upon differentiation to embryoid bodies (EBs) and hematopoietic cells in vitro. We examined whether a human immunodeficiency virus type 1-based lentivirus vector pseudotyped with the vesicular stomatitis virus G protein (VSV-G) could transduce ES cells efficiently and express the green fluorescent protein (GFP) transgene from an internal phosphoglycerate kinase (PGK) promoter throughout development to hematopoietic cells in vitro. An oncoretrovirus vector containing the MESV LTR and the GFP gene was used for comparison. Fluorescence-activated cell sorting analysis of transduced CCE ES cells showed 99.8 and 86.7% GPF-expressing ES cells in the VSV-G-pseudotyped lentivirus (multiplicity of infection [MOI] = 59)- and oncoretrovirus (MOI = 590)-transduced cells, respectively. Therefore, VSV-G pseudotyping of lentiviral and oncoretrovirus vectors leads to efficient transduction of ES cells. Lentivirus vector integration was verified in the ES cell colonies by Southern blot analysis. When the transduced ES cells were differentiated in vitro, expression from the oncoretrovirus LTR was severely reduced or extinct in day 6 EBs and ES cell-derived hematopoietic colonies. In contrast, many lentivirus-transduced colonies, expressing the GFP gene in the undifferentiated state, continued to express the transgene throughout in vitro development to EBs at day 6, and many continued to express in cells derived from hematopoietic colonies. This experimental system can be used to analyze lentivirus vector design for optimal expression in hematopoietic cells and for gain-of-function experiments during ES cell development in vitro.


Sign in / Sign up

Export Citation Format

Share Document