Design of a 5th-polynomial high speed cam-based intermittent four-bar linkage mechanism

Author(s):  
Jing Wu ◽  
Rui-Jun Yan ◽  
Kyoosik Shin
Author(s):  
Hubertus v. Stein ◽  
Heinz Ulbrich

Abstract Due to the elasticity of the links in modern high speed mechanisms, increasing operating speeds often lead to undesirable vibrations, which may render a required accuracy unattainable or, even worse, lead to a failure of the whole process. The dynamic effects e.g. may lead to intolerable deviations from the reference path or even to the instability of the system. Instead of suppressing the vibration by a stiffer design, active control methods may greatly improve the system performance and lead the way to a reduction of the mechanism’s weight. We investigate a four-bar-linkage mechanism and show that by introducing an additional degree of freedom for a controlled actuator and providing a suitable control strategy, the dynamically induced inaccuracies can be substantially reduced. The modelling of the four-bar-linkage mechanism as a hybrid multi body system and the modelling of the complete system (including the actuator) is briefly explained. From the combined feedforward-feedback optimal control approach presented in (v. Stein, Ulbrich, 1998) a time-varying output control law is derived that leads to a very good system performance for this linear discrete time-varying system. The experimental results show the effectiveness of the applied control strategy.


2006 ◽  
Vol 3 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Philip S.L Anderson ◽  
Mark W Westneat

Placoderms are a diverse group of armoured fishes that dominated the aquatic ecosystems of the Devonian Period, 415–360 million years ago. The bladed jaws of predators such as Dunkleosteus suggest that these animals were the first vertebrates to use rapid mouth opening and a powerful bite to capture and fragment evasive prey items prior to ingestion. Here, we develop a biomechanical model of force and motion during feeding in Dunkleosteus terrelli that reveals a highly kinetic skull driven by a unique four-bar linkage mechanism. The linkage system has a high-speed transmission for jaw opening, producing a rapid expansion phase similar to modern fishes that use suction during prey capture. Jaw closing muscles power an extraordinarily strong bite, with an estimated maximal bite force of over 4400 N at the jaw tip and more than 5300 N at the rear dental plates, for a large individual (6 m in total length). This bite force capability is the greatest of all living or fossil fishes and is among the most powerful bites in animals.


Author(s):  
L. Yuan ◽  
J. Rastegar

Abstract A new method for the analysis of the effects of structural flexibility on the dynamic behavior of mechanical systems is presented. The developed method is in most part based on “tracing” the “propagation” of the effects of the high frequency motion requirements on the dynamic response characteristics of machines with structural flexibilities, particularly those with closed-loop kinematic structures. The method considers the “filtering” action of structural elements with flexibility. Such filtering of higher frequency motions is shown to have a predictable effect on the steady state motion of such mechanical system. The main advantage of the developed method is that the effects of such flexibilities can be determined without the need to perform the usual dynamics modeling and computer simulations. The method is shown to be very simple and readily implementable. The method is applied to a four-bar linkage mechanism with a longitudinally flexible coupler link. The obtained results are shown to be highly accurate as compared to those obtained by computer simulation. The application of the method to systematic design of machines with structural flexibility for high speed and precision operation, optimal integration of smart (active) materials into the structure of such machines, and some related issues are discussed.


Author(s):  
L. Yuan ◽  
J. Rastegar

Abstract A new method is presented for the modification of the output motion of linkage mechanisms with closed-loop chains using cams positioned at one or more of its joints. In particular, the method is applied to a four-bar linkage mechanism that is synthesized for function generation for the purpose of eliminating the high harmonic component of the output link motion. By eliminating the high harmonic component of the output motion of a mechanism, the potential vibrational excitation that the mechanism can impart on the overall system, including its own structure, is greatly reduced. The resulting system should therefore be capable of operating at higher speeds with increased precision. For mechanisms with rigid links, the primary source of high harmonic motions is the nonlinearity of the kinematics of closed-loop chains. With the present method, the higher harmonic motions generated due to such nonlinearities are eliminated by the integration of appropriately designed cams that are used to vary the effective link lengths. A numerical example is provided together with a discussion of the related topics of interest.


Author(s):  
J. Rastegar ◽  
L. Yuan

Abstract A systematic method is presented for kinematics synthesis of high-speed mechanisms with optimally integrated smart materials based actuators for the purpose of modifying the output link motion. As an example, the method is applied to a four-bar linkage mechanism that is synthesized for function generation to eliminate the high harmonic component of the output link motion. For mechanisms with rigid links, the high harmonic motions are generated due to the nonlinearity of the kinematics of their closed-loop chains. By eliminating the high harmonic component of the output motion, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds with increased precision. A numerical example is provided together with a discussion of the application of the method to other mechanism synthesis problems and some related topics of interest.


2000 ◽  
Vol 124 (1) ◽  
pp. 14-20 ◽  
Author(s):  
J. Rastegar ◽  
L. Yuan

A systematic method is presented for kinematics synthesis of high-speed mechanisms with optimally integrated smart materials based actuators for the purpose of modifying the output link motion. As an example, the method is applied to a four-bar linkage mechanism that is synthesized for function generation to eliminate the high harmonic component of the output link motion. For mechanisms with rigid links, the high harmonic motions are generated due to the nonlinearity of the kinematics of their closed-loop chains. By eliminating the high harmonic component of the output motion, the potential vibrational excitation that the mechanism can impart on the overall system and its own structure is greatly reduced. The resulting system should therefore be capable of operating at higher speeds and with greater precision. A numerical example is provided together with a discussion of the application of the method to other mechanism synthesis problems and some related topics of interest.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Theeraphong Wongratanaphisan ◽  
Matthew O. T. Cole

This paper presents the analysis of a gravity compensated four-bar linkage mechanism with zero-free-length linear spring suspension. The objective of the study is to seek the possibility of employing the four-bar linkage or similar mechanisms for assisting vertical planar motion of a load mass in a gravitational field. The analysis is based on the system potential energy framework. Firstly, an arrangement of springs for gravity compensation in a four-bar linkage mechanism is proposed. It is then shown that for a four-bar linkage with symmetric geometric and mass properties the potential energy of the system has interesting and useful characteristics near the configuration at which the middle link is horizontal: an ideal operating configuration. The study also covers more practical cases where there is asymmetry in the mass distribution. The potential use of the mechanism in these cases is validated through a study of the sensitivity of the system potential energy function around the equilibrium point. Finally, based on the results obtained a novel mechanism is proposed for achieving gravity compensated vertical plane motion of a load mass. The proposed mechanism can have a wide range of travel and has significant potential for use not only in low-speed mechanical systems but also in high-speed heavy automated systems, where operating accelerations are of the order of 1g or less.


2016 ◽  
Vol 693 ◽  
pp. 1604-1610
Author(s):  
Ying Tian ◽  
Qing Jian Liu ◽  
Lei Zhang ◽  
Song Ling Tian ◽  
Peng Lin Li

Conventional mechanical vibration platform vibrates not only in the direction of back and forth but also in the direction of up and down. Vibrations in both directions are achieved by two mechanisms, respectively. Three-dimensional vibration cannot be realized. In this paper, the servo motor, the gear drive mechanism, and the parallel four-bar linkage mechanism are combined with the NC system. And a type of program-controlled three-dimensional vibration platform is designed. The platform can vibrate in three directions, such as the directions of up and down, left and right, back and forth. The parametric adjustment of amplitude and frequency in three directions can be realized. The vibration platform is suitable for high-speed and light-load three-dimensional vibration. Compared with the existing mechanical vibration platform, the designed vibration platform overcomes some deficiencies to realize three-dimensional vibration with variable frequency and amplitude.


2006 ◽  
Vol 2 (2) ◽  
pp. 105-113 ◽  
Author(s):  
Zhao Yun ◽  
Yu Gao-Hong ◽  
Chen Jian-Neng ◽  
Li Ge

In order to eliminate the interference of reverse-driving and the positive or negative value of normal pressure on the direction of frictional force, in solving mechanism dynamics equations, a dynamics sequence solution (DSS) is proposed. For this purpose a moment equation about joints for links is proposed, and it, together with the traditional mechanics equation of links, forms a dynamic-equation set, to provide a basic equation set of mechanism dynamics. In order to explain DSS, the force at a particular joint is considered in terms of the normal and tangential directions, and the resolution of the problem using a four-bar linkage mechanism as an example, are explained. The solution procedures diagrams for different driving types of reverse-driving force, as well as the solution process for friction force under normal pressure, are described. With a dry-straw-compression mechanism as the example, a dynamic model of the mechanism is established, and the above proposed DSS is used to find unknown forces. Finally, the dynamic characteristics of rotary-transplanting mechanisms (the key component of high-speed rice transplanter) are analyzed, through the proposed DSS, and the results are verified in a test-bed situation. The consistency of the test results with the theoretical ones shows that the proposed DSS is able to effectively solve the dynamics equations of complicated mechanisms. In this part, the authors introduced DSS and discussed the feasibility of its application.


Author(s):  
Amirhosein Javanfar ◽  
Mahdi Bamdad

A general methodology for the dynamic modelling and analysis of planar multi-body systems with a continuous friction model in joint clearance is presented. Joint clearance is the critical factor that influences the dynamic response and the performance of mechanisms for high-speed application. In light of recent developments in the joint clearance studies, the number of contact force models has been introduced with ignoring friction continuity. The selection of an appropriate continuous friction model is still challenging and essential, which requires further development. Therefore, a perfect continuous friction model, including the Stribeck effect, static, dynamic and viscous friction terms, is proposed and validated. Investigating the dynamic modelling and analysis of double rocker four-bar linkage mechanisms with frictional revolute clearance joints is presented to investigate friction models' effect when surfaces collide with a non-zero tangential velocity. Unlike the smooth crank input mechanism, a double rocker four-bar linkage mechanism is analysed as a challenging problem in the impact mode. Resolving this concern, the novel friction model avoids discontinuity at zero velocity considering the accurate static friction zone. The results reveal that the novel friction model, compared with the piecewise friction model, is more effective in reflecting the mechanical systems' dynamic behaviour. In order to grasp the nonlinear characteristics of the high-speed four-bar linkage mechanism with our model in joint clearance, the Poincaré portrait, and Fast Fourier transformation plot are employed. It is proved that chaos exists in the dynamic response with the influence of the restitution coefficients and kinetic coefficient of friction.


Sign in / Sign up

Export Citation Format

Share Document