Fail-Safe Control Strategy of Traction Motor in Electric Mobility with Sensorless Control Scheme

Author(s):  
Ilhan Kim ◽  
Hyeongsu Kim ◽  
Taesuk Kwon ◽  
Hyeoundong Lee
2013 ◽  
Author(s):  
Zhizhong Wang ◽  
Liangyao Yu ◽  
Yufeng Wang ◽  
Changxi You ◽  
Liangxu Ma ◽  
...  

2012 ◽  
Vol 13 (7) ◽  
pp. 1067-1075 ◽  
Author(s):  
K. Jeon ◽  
H. Hwang ◽  
S. Choi ◽  
S. Hwang ◽  
S. B. Choi ◽  
...  

2013 ◽  
Author(s):  
Minwoo Sho ◽  
Kihong Park ◽  
ManBok Park ◽  
Myoungjune Kim

2021 ◽  
Vol 11 (7) ◽  
pp. 3257
Author(s):  
Chen-Huan Pi ◽  
Wei-Yuan Ye ◽  
Stone Cheng

In this paper, a novel control strategy is presented for reinforcement learning with disturbance compensation to solve the problem of quadrotor positioning under external disturbance. The proposed control scheme applies a trained neural-network-based reinforcement learning agent to control the quadrotor, and its output is directly mapped to four actuators in an end-to-end manner. The proposed control scheme constructs a disturbance observer to estimate the external forces exerted on the three axes of the quadrotor, such as wind gusts in an outdoor environment. By introducing an interference compensator into the neural network control agent, the tracking accuracy and robustness were significantly increased in indoor and outdoor experiments. The experimental results indicate that the proposed control strategy is highly robust to external disturbances. In the experiments, compensation improved control accuracy and reduced positioning error by 75%. To the best of our knowledge, this study is the first to achieve quadrotor positioning control through low-level reinforcement learning by using a global positioning system in an outdoor environment.


Author(s):  
Fatma Ezzahra Rhili ◽  
Asma Atig ◽  
Ridha Ben Abdennour ◽  
Fabrice Druaux ◽  
Dimitri Lefebvre

In this study, an adaptive control based on fuzzy adapting rate for neural emulator of nonlinear systems having unknown dynamics is proposed. The indirect adaptive control scheme is composed by the neural emulator and the neural controller which are connected by an autonomous algorithm inspired from the real-time recurrent learning. In order to ensure stability and faster convergence, a neural controller adapting rate is established in the sense of the continuous Lyapunov stability method. Numerical simulations are included to illustrate the effectiveness of the proposed method. The performance of the proposed control strategy is also demonstrated through an experimental simulation.


2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Yong Li ◽  
Hao Wu ◽  
Xing Xu ◽  
Xiaodong Sun ◽  
Jindong Zhao

Permanent magnet traction motor has the advantages of high efficiency, high power density, high torque density and quick dynamic response, which has been widely used in the traction field of electric vehicle. The high-performance control of permanent magnet traction motor depends on accurate rotor position information, which is usually obtained by using mechanical position sensors such as hall sensor, encoder and rotary transformer. However, the traditional mechanical sensor has the disadvantages of high cost, large volume and poor anti-interference ability, which limits the application of permanent magnet motor. The sensorless control technology is an effective way to solve the above-mentioned problem. Firstly, the sensorless control techniques of permanent magnet motor are classified. The sensorless control techniques of permanent magnet motor for rotor initial position, zero-low speed range, medium-high speed range and full speed range are deeply described and compared. Finally, the development trend of sensorless control technology of permanent magnet traction motor is prospected.


Author(s):  
Weiwei Yang ◽  
Jiejunyi Liang ◽  
Jue Yang ◽  
Nong Zhang

Considering the energy consumption and specific performance requirements of mining trucks, a novel uninterrupted multi-speed transmission is proposed in this paper, which is composed of a power-split device, and a three-speed lay-shaft transmission with a traction motor. The power-split device is adapted to enhance the efficiency of the engine by adjusting the gear ratio continuously. The three-speed lay-shaft transmission is designed based on the efficiency map of traction motor to guarantee the drivability. The combination of the power-split device and three-speed lay-shaft transmission can realize uninterrupted gear shifting with the proposed shift strategy, which benefits from the proposed adjunct function by adequately compensating the torque hole. The detailed dynamic models of the system are built to verify the effectiveness of the proposed shift strategy. To evaluate the maximum fuel efficiency that the proposed uninterrupted multi-speed transmission could achieve, dynamic programming is implemented as the baseline. Due to the “dimension curse” of dynamic programming, a real-time control strategy is designed, which can significantly improve the computing efficiency. The simulation results demonstrate that the proposed uninterrupted multi-speed transmission with dynamic programming and real-time control strategy can improve fuel efficiency by 11.63% and 8.51% compared with conventional automated manual transmission system, respectively.


2007 ◽  
Vol 31 (1) ◽  
pp. 127-141
Author(s):  
Yonghong Tan ◽  
Xinlong Zhao

A hysteretic operator is proposed to set up an expanded input space so as to transform the multi-valued mapping of hysteresis to a one-to-one mapping so that the neural networks can be applied to model of the behavior of hysteresis. Based on the proposed neural modeling strategy for hysteresis, a pseudo control scheme is developed to handle the control of nonlinear dynamic systems with hysteresis. A neural estimator is constructed to predict the system residual so that it avoids constructing the inverse model of hysteresis. Thus, the control strategy can be used for the case where the output of hysteresis is unmeasurable directly. Then, the corresponding adaptive control strategy is presented. The application of the novel modeling approach to hysteresis in a piezoelectric actuator is illustrated. Then a numerical example of using the proposed control strategy for a nonlinear system with hysteresis is presented.


Sign in / Sign up

Export Citation Format

Share Document