Temperature and channel-length dependence of impact ionization in p-channel MOSFETs

Author(s):  
M. Mastrapasqua ◽  
J. Bude ◽  
M. Pinto ◽  
L. Manchanda ◽  
K.F. Lee
Soft Matter ◽  
2021 ◽  
Author(s):  
Soichiro Tottori ◽  
Karolis Misiunas ◽  
Vahe Tshitoyan ◽  
Ulrich Keyser

Understanding the diffusive behavior of particles and large molecules in channels is of fundamental importance in biological and synthetic systems, such as channel proteins, nanopores, and nanofluidics. Although theoretical and...


MRS Advances ◽  
2018 ◽  
Vol 3 (57-58) ◽  
pp. 3347-3357
Author(s):  
S. Dutta ◽  
T. Chavan ◽  
S. Shukla ◽  
V. Kumar ◽  
A. Shukla ◽  
...  

Abstract:Spiking Neural Networks propose to mimic nature’s way of recognizing patterns and making decisions in a fuzzy manner. To develop such networks in hardware, a highly manufacturable technology is required. We have proposed a silicon-based leaky integrate and fire (LIF) neuron, on a sufficiently matured 32 nm CMOS silicon-on-insulator (SOI) technology. The floating body effect of the partially depleted (PD) SOI transistor is used to store “holes” generated by impact ionization in the floating body, which performs the “integrate” function. Recombination or equivalent hole loss mimics the “leak” functions. The “hole” storage reduces the source barrier to increase the transistor current. Upon reaching a threshold current level, an external circuit records a “firing” event and resets the SOI MOSFET by draining all the stored holes. In terms of application, the neuron is able to show classification problems with reasonable accuracy. We looked at the effect of scaling experimentally. Channel length scaling reduces voltage for impact ionization and enables sharper impact ionization producing significant designability of the neuron. A circuit equivalence is also demonstrated to understand the dynamics qualitatively. Three distinct regimes are observed during integration based on different hole leakage mechanism.


2015 ◽  
Vol 54 (4) ◽  
pp. 041103 ◽  
Author(s):  
Shinpei Matsuda ◽  
Erumu Kikuchi ◽  
Yasumasa Yamane ◽  
Yutaka Okazaki ◽  
Shunpei Yamazaki

Sign in / Sign up

Export Citation Format

Share Document