Assessment of spectral variation between rice canopy components using spectral feature analysis of near-ground hyperspectral imaging data

Author(s):  
Kai Zhou ◽  
Tao Cheng ◽  
Xinqiang Deng ◽  
Xia Yao ◽  
Yongchao Tian ◽  
...  
2021 ◽  
Vol 13 (16) ◽  
pp. 3207
Author(s):  
Shuai Feng ◽  
Yingli Cao ◽  
Tongyu Xu ◽  
Fenghua Yu ◽  
Dongxue Zhao ◽  
...  

Rice leaf blast, which is seriously affecting the yield and quality of rice around the world, is a fungal disease that easily develops under high temperature and humidity conditions. Therefore, the use of accurate and non-destructive diagnostic methods is important for rice production management. Hyperspectral imaging technology is a type of crop disease identification method with great potential. However, a large amount of redundant information mixed in hyperspectral data makes it more difficult to establish an efficient disease classification model. At the same time, the difficulty and small scale of agricultural hyperspectral imaging data acquisition has resulted in unrepresentative features being acquired. Therefore, the focus of this study was to determine the best classification features and classification models for the five disease classes of leaf blast in order to improve the accuracy of grading the disease. First, the hyperspectral imaging data were pre-processed in order to extract rice leaf samples of five disease classes, and the number of samples was increased by data augmentation methods. Secondly, spectral feature wavelengths, vegetation indices and texture features were obtained based on the amplified sample data. Thirdly, seven one-dimensional deep convolutional neural networks (DCNN) models were constructed based on spectral feature wavelengths, vegetation indices, texture features and their fusion features. Finally, the model in this paper was compared and analyzed with the Inception V3, ZF-Net, TextCNN and bidirectional gated recurrent unit (BiGRU); support vector machine (SVM); and extreme learning machine (ELM) models in order to determine the best classification features and classification models for different disease classes of leaf blast. The results showed that the classification model constructed using fused features was significantly better than the model constructed with a single feature in terms of accuracy in grading the degree of leaf blast disease. The best performance was achieved with the combination of the successive projections algorithm (SPA) selected feature wavelengths and texture features (TFs). The modeling results also show that the DCNN model provides better classification capability for disease classification than the Inception V3, ZF-Net, TextCNN, BiGRU, SVM and ELM classification models. The SPA + TFs-DCNN achieved the best classification accuracy with an overall accuracy (OA) and Kappa of 98.58% and 98.22%, respectively. In terms of the classification of the specific different disease classes, the F1-scores for diseases of classes 0, 1 and 2 were all 100%, while the F1-scores for diseases of classes 4 and 5 were 96.48% and 96.68%, respectively. This study provides a new method for the identification and classification of rice leaf blast and a research basis for assessing the extent of the disease in the field.


2021 ◽  
Vol 13 (8) ◽  
pp. 1562
Author(s):  
Xiangyu Ge ◽  
Jianli Ding ◽  
Xiuliang Jin ◽  
Jingzhe Wang ◽  
Xiangyue Chen ◽  
...  

Unmanned aerial vehicle (UAV)-based hyperspectral remote sensing is an important monitoring technology for the soil moisture content (SMC) of agroecological systems in arid regions. This technology develops precision farming and agricultural informatization. However, hyperspectral data are generally used in data mining. In this study, UAV-based hyperspectral imaging data with a resolution o 4 cm and totaling 70 soil samples (0–10 cm) were collected from farmland (2.5 × 104 m2) near Fukang City, Xinjiang Uygur Autonomous Region, China. Four estimation strategies were tested: the original image (strategy I), first- and second-order derivative methods (strategy II), the fractional-order derivative (FOD) technique (strategy III), and the optimal fractional order combined with the optimal multiband indices (strategy IV). These strategies were based on the eXtreme Gradient Boost (XGBoost) algorithm, with the aim of building the best estimation model for agricultural SMC in arid regions. The results demonstrated that FOD technology could effectively mine information (with an absolute maximum correlation coefficient of 0.768). By comparison, strategy IV yielded the best estimates out of the methods tested (R2val = 0.921, RMSEP = 1.943, and RPD = 2.736) for the SMC. The model derived from the order of 0.4 within strategy IV worked relatively well among the different derivative methods (strategy I, II, and III). In conclusion, the combination of FOD technology and the optimal multiband indices generated a highly accurate model within the XGBoost algorithm for SMC estimation. This research provided a promising data mining approach for UAV-based hyperspectral imaging data.


Author(s):  
Alejandro Cardesin Moinelo ◽  
Giuseppe Piccioni ◽  
Eleonora Ammannito ◽  
Gianrico Filacchione ◽  
Pierre Drossart

PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Leon Bungert ◽  
Matthias J. Ehrhardt ◽  
Rafael Reisenhofer

Author(s):  
Aoife Gowen ◽  
Jun-Li Xu ◽  
Ana Herrero-Langreo

Applications of hyperspectral imaging (HSI) to the quantitative and qualitative measurement of samples have grown widely in recent years, due mainly to the improved performance and lower cost of imaging spectroscopy instrumentation. Data sampling is a crucial yet often overlooked step in hyperspectral image analysis, which impacts the subsequent results and their interpretation. In the selection of pixel spectra for the calibration of classification models, the spatial information in HSI data can be exploited. In this paper, a variety of sampling strategies for selection of pixel spectra are presented, exemplified through five case studies. The strategies are compared in terms of the proportion of global variability captured, practicality and predictive model performance. The use of variographic analysis as a guide to the spatial segmentation prior to sampling leads to the selection of representative subsets while reducing the variation in model performance parameters over repeated random selection.


2019 ◽  
Vol 42 (6) ◽  
pp. e13225 ◽  
Author(s):  
Joshua H. Aheto ◽  
Xingyi Huang ◽  
Xiaoyu Tian ◽  
Yi Ren ◽  
Ernest Bonah ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4439
Author(s):  
Vladislav Batshev ◽  
Alexander Machikhin ◽  
Grigoriy Martynov ◽  
Vitold Pozhar ◽  
Sergey Boritko ◽  
...  

Optical biomedical imaging in short wave infrared (SWIR) range within 0.9–1.7 μm is a rapidly developing technique. For this reason, there is an increasing interest in cost-effective and robust hardware for hyperspectral imaging data acquisition in this range. Tunable-filter-based solutions are of particular interest as they provide image processing flexibility and effectiveness in terms of collected data volume. Acousto-optical tunable filters (AOTFs) provide a unique set of features necessary for high-quality SWIR hyperspectral imaging. In this paper, we discuss a polarizer-free configuration of an imaging AOTF that provides a compact and easy-to-integrate design of the whole imager. We have carried out image quality analysis of this system, assembled it and validated its efficiency through multiple experiments. The developed system can be helpful in many hyperspectral applications including biomedical analyses.


Sign in / Sign up

Export Citation Format

Share Document