scholarly journals Effects of rice hull bio-char supplementation on the odor strength in the pig manure composting facilities

2021 ◽  
Vol 23 (2) ◽  
pp. 62-66
Author(s):  
Deug-Woo Han ◽  
Dong-Hyun Lee ◽  
Changhan Kim ◽  
Dongjo Yu ◽  
Dae Kwon Park ◽  
...  
2012 ◽  
Vol 45 (6) ◽  
pp. 1032-1036 ◽  
Author(s):  
Hong-Bae Yun ◽  
Ye-Jin Lee ◽  
Myung-Sook Kim ◽  
Sang-Min Lee ◽  
Yeoun Lee ◽  
...  
Keyword(s):  

2017 ◽  
pp. 44-54
Author(s):  
Zenaida Gonzaga ◽  
Warren Obeda ◽  
Ana Linda Gorme ◽  
Jessie Rom ◽  
Oscar Abrantes ◽  
...  

Okra or Lady’s finger, botanically known as Abelmoschus esculentus (L.) Moench, is a tropical and sub-tropical indigenous vegetable crop commonly grown for its fibrous, slimy, and nutritious fruits and consumed by all classes of population. It has also several medicinal and economic values. Despite its many uses and potential value, its importance is under estimated, under-utilized, and considered a minor crop and little attention was paid to its improvement. The study was conducted to evaluate the effects of different planting densities and mulching materials on the growth and yield of okra grown in slightly sloping area in the marginal uplands in Sta. Rita, Samar, Philippines. A split-plot experiment was set up with planting density as main plot and the different mulching materials as the sub-plot which were: unmulched or bare soil, rice straw, rice hull, hagonoy and plastic mulch. Planting density did not significantly affect the growth and yield of okra. Regardless ofthe mulching materials used, mulched plants were taller and yielded higher compared to unmulched plants. Moreover, the use of plastic mulch resulted to the highest total fruit yield. The results indicate the potential of mulching in increasing yield and thus profitability of okra production under marginal upland conditions.


Waterlines ◽  
1983 ◽  
Vol 2 (2) ◽  
pp. 21-23 ◽  
Author(s):  
Barnes ◽  
Mampitiyarachichi

2019 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Lindawati Lindawati

Reduction of food rations and shortages is one of the impacts of the increasing human population. Food sector industries then try to cope with the fast growing number of customers. Agribusiness sector gains its popularity in these recent years, including pig farm. The increase trend of animal farming industry is likely to bring increasing pollution problem unless effective treatment methods are used. The main problems related to the pig farm include odor nuisance and pig manure disposal. The existing land application of piggery wastewater is the traditional way to discharge the wastewater. This may yield in land and water contamination, due to the accumulation of unused nutrients by crop plant. A case study of a large commercial pig farm from Australia is proposed to apply in smaller scale in Indonesia. Operational strategies for the small-scale SBR (Sequencing Batch Reactor) treating piggery effluent were developed based on lab-scale experiments. Due to SBR characteristics, which are money-saving and space-saving, it is very suitable to be applied in urban area. An economic evaluation was made of various process options. The cost estimation showed that SBR is a cost effective process, allowing operational batches to be adjusted to reduce unnecessary aeration cost. A reduction in the aeration cost was achieved by shortening the batch time from 24-h to 8-h. A comparison of three different SBR options showed that smaller size reactors could be more flexible and cost effective when compared with the larger ones.


2006 ◽  
Vol 21 (5) ◽  
pp. 504-508
Author(s):  
N. Dixit ◽  
M. Sain ◽  
M. T. Kortschott ◽  
D. Gulati
Keyword(s):  

2021 ◽  
Vol 325 ◽  
pp. 124703
Author(s):  
Tao Liu ◽  
Mukesh Kumar Awasthi ◽  
Minna Jiao ◽  
Sanjeev Kumar Awasthi ◽  
Shiyi Qin ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Author(s):  
Luisa Ugolini ◽  
Donatella Scarafile ◽  
Roberto Matteo ◽  
Eleonora Pagnotta ◽  
Lorena Malaguti ◽  
...  

AbstractAnimal manure application to soils is considered to be one of the main cause of antibiotic and bacterial pathogen spread in the environment. Pig livestock, which is the source of one of the most used fertilizer for cultivated land, is also a hotspot for antibiotics and antibiotic-resistant bacteria. Besides harsh chemical and physical sanitization treatments for the abatement of antibiotics and bacterial load in livestock waste, more sustainable and environmentally friendly strategies need to be considered. In this context, the use of natural substances which are proved useful for pest and disease control is currently under exploration for their role in the reduction of bacterial pathogen population. Among these, plants and derived products from the Brassicaceae family, characterized by the presence of a defensive glucosinolate-myrosinase enzymatic system, have been successfully exploited for years in agriculture using the so-called biofumigation technique against crop diseases. Although the application of biofumigation to suppress a range of soil borne pests has been well documented, no studies have been examined to reduce bacterial population in animal waste. In the present study, the release and the antibacterial activity of bioactive compounds deriving from different Brassicaceae defatted seed meals against pathogens and bacterial population in pig manure is addressed. Rapistrum rugosum and Brassica nigra defatted seed meals were found to be the most active products against tested pathogens and able to significantly reduce the bacterial load in the manure.


Sign in / Sign up

Export Citation Format

Share Document