Preparation and antibacterial performance of cinnamon essential oil nanoemulsion on milk foodborne pathogens

Author(s):  
Peyman Mahmoudzadeh ◽  
Javad Aliakbarlu ◽  
Mehran Moradi
2018 ◽  
Vol 16 (S1) ◽  
pp. S48-S54
Author(s):  
Y. Ez zoubi ◽  
S. Lairini ◽  
A. Farah ◽  
K. Taghzouti ◽  
A. El Ouali Lalami

The purpose of this study was to determine the chemical composition and to evaluate the antioxidant and antibacterial effects of the Moroccan Artemisia herba-alba Asso essential oil against foodborne pathogens. The essential oil of Artemisia herba-alba was analyzed by gas chromatography coupled with mass spectroscopy. The antibacterial activity was assessed against three bacterial strains isolated from foodstuff and three bacterial strains referenced by the ATCC (American Type Culture Collection) using the disk diffusion assay and the macrodilution method. The antioxidant activity was evaluated using the DPPH (2, 2-diphenyl-1- picrylhydrazyl) method. The fourteen compounds of the Artemisia herba-alba essential oil were identified; the main components were identified as β-thujone, chrysanthenone, α-terpineol, α-thujone, α-pinene, and bornyl acetate. The results of the antibacterial activity obtained showed a sensitivity of the different strains to Artemisia herba-alba essential oil with an inhibition diameter of 8.50 to 17.00 mm. Concerning the MICs (minimum inhibitory concentrations), the essential oil exhibited much higher antibacterial activity with MIC values of 2.5 μl/ml against Bacillus subtilis ATCC and Lactobacillus sp. The essential oil was found to be active by inhibiting free radicals with an IC50 (concentration of an inhibitor where the response is reduced by half) value of 2.9 μg/ml. These results indicate the possible use of the essential oil on food systems as an effective inhibitor of foodborne pathogens, as a natural antioxidant, and for potential pharmaceutical applications. However, further research is needed in order to determine the toxicity, antibacterial, and antioxidant effects in edible products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeo-Jin Jeong ◽  
Hee-Eun Kim ◽  
Su-Jin Han ◽  
Jun-Seon Choi

AbstractCinnamon essential oil (CEO) has antibacterial properties, but its ability to suppress the formation of multi-species oral biofilms has not been fully elucidated. This study evaluated the antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion (CEON) against oral biofilms formed using a microcosm biofilm model. The biofilms were formed on bovine enamel specimens over a 7-day period, during which all specimens were treated with one of three solutions: 5% CEON (n = 35), 0.5% cocamidopropyl betaine (n = 35), or 0.12% chlorhexidine gluconate (CHX; n = 35). Antibacterial and antibiofilm activities were determined by the red/green ratios (R/G values) of 7-day-old mature biofilms photographed with quantitative light-induced fluorescence-digital, the number of aciduric bacterial colony-forming units (CFUs) within each biofilm, and the absorbance of bacterial suspensions. One-way and repeated-measures analysis of variance were performed to compare differences among the three solutions. R/G values were lowest in the 0.12% CHX group, but not significantly differ from the 5% CEON group. The number of CFUs and absorbance were lowest in the 5% CEON group. This study showed that nanoemulsified CEO inhibited the maturation of multi-species oral biofilms and the growth of oral microorganisms in biofilms, including aciduric bacteria that cause dental caries.


2013 ◽  
Vol 44 (4) ◽  
pp. 1189-1194 ◽  
Author(s):  
Geiseanny Fernandes do Amarante Melo ◽  
Ana Caroliny Vieira da Costa ◽  
Felício Garino Junior ◽  
Rosália Severo Medeiros ◽  
Marta Suely Madruga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document