scholarly journals Resistance in melon to Monosporascus cannonballus and M. eutypoides : Fungal pathogens associated with Monosporascus root rot and vine decline

2020 ◽  
Vol 177 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Gabriel Castro ◽  
Gorka Perpiñá ◽  
Cristina Esteras ◽  
Josep Armengol ◽  
Belén Picó ◽  
...  
HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 675f-676
Author(s):  
David W. Wolff ◽  
Marvin E. Miller

Monosporascus root rot/vine decline (MRR/VD), caused by Monosporascus cannonballus, is a serious disease of the major melon production areas of Texas, California, and Arizona. We have previously identified differing levels of tolerance in melon germplasm based on vine disease symptoms. This study was conducted to evaluate the yield response of commercial and experimental cantaloupe and honeydew hybrids subjected to MRR/VD. Thirty-nine and six cantaloupe and honeydew hybrids, respectively, were transplanted into a field highly infested with M. cannonballus in March 1995 in a randomized, complete block with 4 replications. The field was highly infested with Monosporascus cannonballus. `Caravelle' (very susceptible) and `Deltex' (tolerant) were included as control entries. Fruit were harvested at maturity and sized. Any fruit that did not mature completely due to vine death were counted as culls (unmarketable). Marketable yield of the cantaloupe entries ranged from 26.74% to 67.35%. The most tolerant hybrids were `SR103654', `Don Carlos', `Explorer', and `Ovation'. Marketable yield of the honeydews ranged from 8.43% to 41.46%, with `Morning Ice' and `Creme de Menthe' showing the most tolerance. The best performing hybrids were evaluated again the Fall 1995 and Spring 1996 seasons. In general, genotypes which matured later, and had a more dispersed fruit set, were more tolerant to MRR/VD. This supports previous data showing that high physiological stress (heavy, concentrated fruit load) leads to more severe and rapid vine collapse.


Plant Disease ◽  
2018 ◽  
Vol 102 (5) ◽  
pp. 1036-1036 ◽  
Author(s):  
E. A. Markakis ◽  
E. A. Trantas ◽  
C. S. Lagogianni ◽  
E. Mpalantinaki ◽  
M. Pagoulatou ◽  
...  

Plant Disease ◽  
2003 ◽  
Vol 87 (10) ◽  
pp. 1176-1178 ◽  
Author(s):  
M. E. Stanghellini ◽  
D. M. Ferrin ◽  
D. H. Kim ◽  
M. M. Waugh ◽  
K. C. Radewald ◽  
...  

Root rot and vine decline, caused by Monosporascus cannonballus, is a destructive disease of melons in the desert production regions of southern California. In 1998, we initiated studies on the use of preplant fumigation to reduce resident pathogen populations in soil. Preplant fumigation with methyl iodide injected as a hot gas at 448.4 kg/ha through drip irrigation tape in preformed, tarped beds consistently provided significant (P < 0.05) reductions in the percentage of roots infected compared with the nonfumigated controls; these reductions were equal to or better than those achieved with an equivalent rate (448.4 kg/ha) of methyl bromide. Chloropicrin applied in water at 249.0 kg/ha through buried drip irrigation tape to either tarped or nontarped beds significantly (P < 0.05) reduced the percentages of both roots infected and roots on which perithecia were produced compared with nonfumigated controls.


2015 ◽  
Vol 163 (11-12) ◽  
pp. 898-907 ◽  
Author(s):  
Maria Pia Aleandri ◽  
Diana Martignoni ◽  
Roberto Reda ◽  
Gabriele Chilosi

Plant Disease ◽  
2000 ◽  
Vol 84 (3) ◽  
pp. 224-230 ◽  
Author(s):  
B. J. Aegerter ◽  
T. R. Gordon ◽  
R. M. Davis

The occurrence of fungi associated with root rot and vine decline of melon (Cucumis melo) in commercial fields in California was surveyed over 3 years. The fungi most frequently isolated from discolored vascular tissue or root rot were Acremonium cucurbitacearum, Rhizopycnis vagum, Monosporascus cannonballus, Fusarium solani, Macrophomina phaseolina, Pythium spp., and Verticillium dahliae. The frequency of isolation of the various fungi varied with root symptomology. Pythium spp., and M. phaseolina were frequently associated with a wet, brownish root rot, while A. cucurbitacearum, R. vagum, and Rhizoctonia solani were generally associated with a dry, corky root rot. Presence of Monosporascus cannonballus was associated both with a wet, brownish rot as well as with discrete, reddish, corky lesions. The frequency of isolation of a given pathogen varied with geographic location, with M. cannonballus present only in the southern production areas, while A. cucurbitacearum and Rhizopycnis vagum were most common in the northern production areas. In pathogenicity tests in field microplots, M. cannonballus caused vine collapse and severe root rot of cantaloupe, reducing root length density by 93%. California isolates of R. vagum and A. cucurbitacearum, although only weakly pathogenic in field microplots, caused root discoloration and reduced vine growth in greenhouse tests. Reduction in dry weight of greenhouse-grown cantaloupe was 40, 23, and 39% for R. vagum, A. cucurbitacearum, and M. cannonballus, respectively.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 681-683 ◽  
Author(s):  
Kevin Crosby ◽  
David Wolff ◽  
Marvin Miller

The fungus Monosporascus cannonballus Pollock and Uecker infects melon (Cucumis melo L.) roots and causes root rot/vine decline disease, which has reduced productivity of commercial muskmelon and honeydew cultivars in South Texas. To assess the impact of the fungus on several root traits, two greenhouse experiments were carried out over two seasons. A comparison of inoculated vs. control root systems was carried out with four melon cultivars representing both susceptible (`Magnum 45' and `Caravelle') and tolerant types (`Deltex' and `Doublon'). The sand medium was inoculated with 50–60 colony forming units (CFUs) per gram of the severe Monosporascus strain, TX90-25. After a 30-day growth period, the control and inoculated root systems were carefully cleaned and evaluated. Roots were scanned by a computer and the data were analyzed by the Rhizo Pro 3.8 program. The traits of interest included total root length, average root diameter, number of root tips, number of fine roots (0–0.5 mm), and number of small roots (0.5–1 mm). Significant differences existed between the two tolerant cultivars and the two susceptible ones for four of the traits. Total root length, fine and small root length, and root tip number were greater for `Deltex' than for both susceptible cultivars and greater for `Doublon' than for `Caravelle'. The results suggest that tolerance to this pathogen is closely linked to the integrity of the root structure. The potential for improving root vigor to combat root rot/vine decline merits further investigation.


Plant Disease ◽  
2016 ◽  
Vol 100 (3) ◽  
pp. 651-651 ◽  
Author(s):  
L. Y. Yan ◽  
Q. Y. Zang ◽  
Y. P. Huang ◽  
Y. H. Wang

2018 ◽  
Vol 51 (2) ◽  
Author(s):  
Tanveer Hussain ◽  
Tony Adesemoye ◽  
Muhammad Ishtiaq ◽  
Mewash Maqbool ◽  
Azhar Azam ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


Sign in / Sign up

Export Citation Format

Share Document