Effect of the Allelic Variant of Alcohol DehydrogenaseADH1B*2on Ethanol Metabolism

2014 ◽  
Vol 38 (6) ◽  
pp. 1502-1509 ◽  
Author(s):  
Gaeun Kang ◽  
Kyung-Yeol Bae ◽  
Sung-Wan Kim ◽  
Jin Kim ◽  
Hee-Young Shin ◽  
...  

1991 ◽  
Vol 82 (1) ◽  
pp. 103-108
Author(s):  
P. Perata ◽  
A. Alpi


1972 ◽  
Vol 33 (3) ◽  
pp. 751-755 ◽  
Author(s):  
Mary K. Roach ◽  
Myrna Khan ◽  
Marguerite Knapp ◽  
W. N. Reese


2014 ◽  
Vol 51 (5) ◽  
pp. 20-23
Author(s):  
S. Rykov ◽  
◽  
Y Byts ◽  
S. Goncharov ◽  
V. Dosenko ◽  
...  


2017 ◽  
Vol 6 (03) ◽  
pp. 5297
Author(s):  
Vedangi Aaren* ◽  
Godi Sudhakar ◽  
Girinadh L.R.S.

In both developed and developing countries, overuse of alcohol is a considered as the major cause of acute and chronic pancreatitis. Prolonged overconsumption of alcohol for 5–10 years typically precedes the initial attack of acute alcoholic pancreatitis. It is observed that only a minority (around 5%) of alcoholics develop pancreatitis. It is now established that the pancreas has the capacity to metabolize ethanol. Previous studies have shown that there are two major pathways of ethanol metabolism, oxidative and non-oxidative. Oxidative ethanol metabolism involves the conversion of ethanol to acetaldehyde, a reaction that is catalysed by aldehyde dehydrogenase (ADH) with contributions from cytochrome P450 enzyme (CYP2E1) and possibly also catalase. Genetic factors regulating alcohol metabolism could predispose in developing alcoholic pancreatitis (AP). We investigated the association of polymorphisms in ADH enzymes with the alcoholic pancreatitis in North coastal Andhra Pradesh. Patients with alcoholic pancreatitis (AP; n = 100), alcoholic controls (AC; n = 100), and healthy controls (HC; n = 100) were included in the study. Blood samples were collected from the subjects in EDTA coated vials. DNA was extracted and genotyping for ADH2 and ADH3 was done by PCR-RFLP (polymerase chain reaction restriction fragment length polymorphism). The products were analysed by gel electrophoresis. The frequency distribution of ADH3*1/*1 genotype was significantly higher in AP group (54%) compared with AC (35%), and HC (42%), and was found to be associated with increased risk of alcoholic pancreatitis. There was no statistically significant difference between the frequency distribution of ADH3*1/*1, ADH3*1/*2, and ADH3*2/*2 genotypes between AC and HC. There was no statistically significant difference between the frequency distribution of ADH2*1/*1, ADH2*1/*2, and ADH2*2/*2 genotypes in AP compared with AC and HC. This study shows that carriers of ADH3*1/*1 individuals consuming alcohol are at higher risk for alcoholic pancreatitis than those with other genotypes such as ADH3*1/*2 and ADH3*2/*2. 



1989 ◽  
Vol 264 (10) ◽  
pp. 5593-5597
Author(s):  
C Norsten ◽  
T Cronholm ◽  
G Ekström ◽  
J A Handler ◽  
R G Thurman ◽  
...  


1959 ◽  
Vol 234 (6) ◽  
pp. 1544-1549
Author(s):  
Marion Edmonds Smith ◽  
Henry Wise Newman
Keyword(s):  


Author(s):  
Hee-Jeong Lee ◽  
Periaswamy Sivagnanam Saravana ◽  
Truc Cong Ho ◽  
Yeon-Jin Cho ◽  
Jin-Seok Park ◽  
...  


2020 ◽  
Vol 33 (6) ◽  
pp. 691-701 ◽  
Author(s):  
Tatsushi Tanaka ◽  
Kohei Aoyama ◽  
Atsushi Suzuki ◽  
Shinji Saitoh ◽  
Haruo Mizuno

AbstractObjectivesCongenital hypothyroidism (CH) is the most common congenital endocrine disorder. Recent advances in genetic testing have revealed its causative mutations in some CH patients. However, the underlying etiology remains unknown in most patients. This study aimed to perform clinical and genetic investigation in Japanese CH patients to uncover genotype-phenotype correlations.MethodsWe enrolled 136 Japanese patients with transient or permanent CH between April 2015 and March 2017, and performed next-generation sequencing of 19 genes implicated in CH.ResultsWe identified potentially pathogenic bi-allelic variants in DUOX2, TSHR, and TPO in 19, 5, and 1 patient, respectively (autosomal recessive), and a potentially pathogenic mono-allelic variant in NKX2-1 (autosomal dominant) in 1 patient. Molecular genetic diagnosis was highly suggested in 26 patients (19%) from 23 families. We also detected a potentially pathogenic mono-allelic variant in five recessive genes (DUOX2, TSHR, TG, DUOXA2, and TPO) in 31 unrelated patients (23%), although the pathogenicity of these variants remains inconclusive. Patients with bi-allelic DUOX2 variants showed a more severe clinical presentation in infancy than those with bi-allelic TSHR variants. However, this trend reversed beyond infancy. There were no statistical differences in initial thyroid stimulating hormone, free thyroxine, thyroglobulin, and levothyroxine dose as of March 2017 between patients with bi-allelic and mono-allelic DUOX2 variants.ConclusionsThe prevalence of potentially-pathogenic variants in Japanese CH patients was similar to that found by previous reports. Our study demonstrates a genotype-phenotype correlation in Japanese CH patients.



Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 225
Author(s):  
Lei Xuan ◽  
Jianfeng Hua ◽  
Fan Zhang ◽  
Zhiquan Wang ◽  
Xiaoxiao Pei ◽  
...  

The Taxodium hybrid ‘Zhongshanshan 406’ (T. hybrid ‘Zhongshanshan 406’) [Taxodium mucronatum Tenore × Taxodium distichum (L.). Rich] has an outstanding advantage in flooding tolerance and thus has been widely used in wetland afforestation in China. Alcohol dehydrogenase genes (ADHs) played key roles in ethanol metabolism to maintain energy supply for plants in low-oxygen conditions. Two ADH genes were isolated and characterized—ThADH1 and ThADH4 (GenBank ID: AWL83216 and AWL83217—basing on the transcriptome data of T. hybrid ‘Zhongshanshan 406’ grown under waterlogging stress. Then the functions of these two genes were investigated through transient expression and overexpression. The results showed that the ThADH1 and ThADH4 proteins both fall under ADH III subfamily. ThADH1 was localized in the cytoplasm and nucleus, whereas ThADH4 was only localized in the cytoplasm. The expression of the two genes was stimulated by waterlogging and the expression level in roots was significantly higher than those in stems and leaves. The respective overexpression of ThADH1 and ThADH4 in Populus caused the opposite phenotype, while waterlogging tolerance of the two transgenic Populus significantly improved. Collectively, these results indicated that genes ThADH1 and ThADH4 were involved in the tolerance and adaptation to anaerobic conditions in T. hybrid ‘Zhongshanshan 406’.



Sign in / Sign up

Export Citation Format

Share Document