Morphometry of skeletal muscle capillaries: the relationship between capillary ultrastructure and ageing in humans

2016 ◽  
Vol 218 (2) ◽  
pp. 98-111 ◽  
Author(s):  
M. Bigler ◽  
D. Koutsantonis ◽  
A. Odriozola ◽  
S. Halm ◽  
S. A. Tschanz ◽  
...  
Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 807
Author(s):  
Silvia Ravalli ◽  
Concetta Federico ◽  
Giovanni Lauretta ◽  
Salvatore Saccone ◽  
Elisabetta Pricoco ◽  
...  

Skeletal muscle atrophy, resulting from states of hypokinesis or immobilization, leads to morphological, metabolic, and functional changes within the muscle tissue, a large variety of which are supported by the stromal cells populating the interstitium. Telocytes represent a recently discovered population of stromal cells, which has been increasingly identified in several human organs and appears to participate in sustaining cross-talk, promoting regenerative mechanisms and supporting differentiation of local stem cell niche. The aim of this morphologic study was to investigate the presence of Telocytes in the tibialis anterior muscle of healthy rats undergoing an endurance training protocol for either 4 weeks or 16 weeks compared to sedentary rats. Histomorphometric analysis of muscle fibers diameter revealed muscle atrophy in sedentary rats. Telocytes were identified by double-positive immunofluorescence staining for CD34/CD117 and CD34/vimentin. The results showed that Telocytes were significantly reduced in sedentary rats at 16 weeks, while rats subjected to regular exercise maintained a stable Telocytes population after 16 weeks. Understanding of the relationship between Telocytes and exercise offers new chances in the field of regenerative medicine, suggesting possible triggers for Telocytes in sarcopenia and other musculoskeletal disorders, promoting adapted physical activity and rehabilitation programmes in clinical practice.


Metabolism ◽  
2010 ◽  
Vol 59 (11) ◽  
pp. 1556-1561 ◽  
Author(s):  
Darren C. Henstridge ◽  
Josephine M. Forbes ◽  
Sally A. Penfold ◽  
Melissa F. Formosa ◽  
Sonia Dougherty ◽  
...  

1969 ◽  
Vol 23 (2) ◽  
pp. 271-280 ◽  
Author(s):  
V. R. Young ◽  
P. C. Huang

1. After 14 days on a diet containing 5 or 25% casein male rats received a fracture of the left femur. Four hours before they were killed the injured and control rats were injected with [1-14C]leucine; the incorporation of radioactivity into an isolated fraction of skeletal muscle ribosomes was studied 6, 12, 24, 48, 72, 96 and 228 h after injury.2. The incorporation of [14C]leucine into the ribosome fraction in right thigh muscles dropped to 40% of control values 72 h after fracture in well-nourished rats and after 96 h with diets containing 5 or 25%, casein.3. The specific activity of the trichloroacetic acid-soluble fraction of muscle from injured rats was equal to or higher than that of the controls during the first 72 h but lower at 96 h.4. These results suggest that a reduced incorporation of amino acids by ribosomes from the right thigh muscle occurred on day 3 after fracture in the group receiving 25% casein but not in the group receiving 5% casein.5. Muscle RNA and DNA concentrations were not affected by the injury.6. The relationship between these findings and the loss of muscle N after injury is discussed.


Author(s):  
Anastasia S. Babkina

Abstract. The paper presents changes and mathematical models of autofluorescence of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) and their redox ratio (RR) in the rat skeletal muscle during the first 24 hours after death. Aim. To establish a pattern of change in the fluorescence intensity of NADH and FAD coenzymes, as well as their relationship in the skeletal muscle during the first 24 hours after death using mathematical modeling. Material and methods. The experiment was performed on Sprague Dawley rats. The fluorescence intensity of FAD and NADH coenzymes in skeletal muscle was measured in situ in living rats under general anesthesia, 5 minutes after euthanasia, and at intervals of 1.5-3 h during the 24-hour postmortem period. To estimate the fluorescence intensity of NADH and FAD coenzymes and to calculate the RR, the Lasma MC-3 fluorescence measuring device with special software was used. The obtained data were analyzed by non-linear regression analysis. The summary, accuracy estimation and significance of the regression equation coefficients were assessed using SigmaPlot 10.0 software. The significance of the regression model was tested using the Fisher F-criterion. Results. During the first 3 hours of the postmortem period, an increase in the mean values of RR and NADH fluorescence was detected, starting from 4.5 and till 24 hours post-mortem their gradual decrease was observed. The relationship between NADH, RR and time after death is characterized by the Weibull equation. The statistical significance of NADH and RR models, based on the obtained equations was considered high. Conclusion. The analysis of the obtained data allowed to create mathematical models describing the relationship between RR and NADH fluorescence intensity and time after death, which confirms non-randomness and regularity of the discovered patterns.time of death; NADH; FAD; auto-fluorescence; redox ratio; early post-mortem changes


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254844
Author(s):  
Joon-Kee Yoon ◽  
Jeon Yeob Jang ◽  
Young-Sil An ◽  
Su Jin Lee

Purpose To evaluate the feasibility of using skeletal muscle mass (SMM) at C3 (C3 SMM) as a diagnostic marker for sarcopenia in head and neck cancer (HNC) patients. Methods We evaluated 165 HNC patients and 42 healthy adults who underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography scans. The paravertebral muscle area at C3 and skeletal muscle area at L3 were measured by CT. Pearson’s correlation was used to assess the relationship between L3 and C3 SMMs. The prediction model for L3 SMM was developed by multiple linear regression. Then the correlation and the agreement between actual and predicted L3 SMMs were assessed. To evaluate the diagnostic value of C3 SMM for sarcopenia, the receiver operating characteristics (ROC) curves were analyzed. Results Of the 165 HNC patients, 61 (37.0%) were sarcopenic and 104 (63.0%) were non-sarcopenic. A very strong correlation was found between L3 SMM and C3 SMM in both healthy adults (r = 0.864) and non-sarcopenic patients (r = 0.876), while a fair association was found in sarcopenic patients (r = 0.381). Prediction model showed a very strong correlation between actual SMM and predicted L3 SMM in both non-sarcopenic patients and healthy adults (r > 0.9), whereas the relationship was moderate in sarcopenic patients (r = 0.7633). The agreement between two measurements was good for healthy subjects and non-sarcopenic patients, while it was poor for sarcopenic patients. On ROC analysis, predicted L3 SMM showed poor diagnostic accuracy for sarcopenia. Conclusions A correlation between L3 and C3 SMMs was weak in sarcopenic patients. A prediction model also showed a poor diagnostic accuracy. Therefore, C3 SMM may not be a strong predictor for L3 SMM in sarcopenic patients with HNC.


2019 ◽  
Author(s):  
Ian M Williams ◽  
P Mason McClatchey ◽  
Deanna P Bracy ◽  
Jeffrey S Bonner ◽  
Francisco A Valenzuela ◽  
...  

ABSTRACTDelivery of insulin to the surface of myocytes is required for skeletal muscle (SkM) insulin action. Previous studies have shown that SkM insulin delivery is reduced in the setting of obesity and insulin resistance (IR). The key variables that control SkM insulin delivery are 1) microvascular perfusion and 2) the rate at which insulin moves across the continuous endothelium of SkM capillaries. Obesity and IR are associated with reduced insulin-stimulated SkM perfusion. Whether an impairment in trans-endothelial insulin transport (EIT) contributes to SkM IR, however, is unknown. We hypothesized that EIT would be delayed in a mouse model of diet-induced obesity (DIO) and IR. Using intravital insulin imaging, we found that DIO male mice have a ~15% reduction in EIT compared to their lean counterparts. This impairment in EIT is associated with a 45% reduction in the density of endothelial vesicles. Despite impaired EIT, hyperinsulinemia sustained delivery of insulin to the interstitial space in DIO male mice. Even with maintained interstitial insulin delivery DIO male mice still showed SkM IR, indicating severe myocyellular IR in this model. Interestingly, there was no difference in EIT, endothelial ultrastructure or SkM insulin sensitivity between lean and high fat diet-fed female mice. These results suggest that, in male mice, obesity results in damage to the capillary endothelium which limits the capacity for EIT.


2004 ◽  
Vol 287 (3) ◽  
pp. C594-C602 ◽  
Author(s):  
Christopher M. Rembold ◽  
Robert L. Wardle ◽  
Christopher J. Wingard ◽  
Timothy W. Batts ◽  
Elaine F. Etter ◽  
...  

Serine 19 phosphorylation of the myosin regulatory light chain (MRLC) appears to be the primary determinant of smooth muscle force development. The relationship between MRLC phosphorylation and force is nonlinear, showing that phosphorylation is not a simple switch regulating the number of cycling cross bridges. We reexamined the MRLC phosphorylation-force relationship in slow, tonic swine carotid media; fast, phasic rabbit urinary bladder detrusor; and very fast, tonic rat anococcygeus. We found a sigmoidal dependence of force on MRLC phosphorylation in all three tissues with a threshold for force development of ∼0.15 mol Pi/mol MRLC. This behavior suggests that force is regulated in a highly cooperative manner. We then determined whether a model that employs both the latch-bridge hypothesis and cooperative activation could reproduce the relationship between Ser19-MRLC phosphorylation and force without the need for a second regulatory system. We based this model on skeletal muscle in which attached cross bridges cooperatively activate thin filaments to facilitate cross-bridge attachment. We found that such a model describes both the steady-state and time-course relationship between Ser19-MRLC phosphorylation and force. The model required both cooperative activation and latch-bridge formation to predict force. The best fit of the model occurred when binding of a cross bridge cooperatively activated seven myosin binding sites on the thin filament. This result suggests cooperative mechanisms analogous to skeletal muscle that will require testing.


Sign in / Sign up

Export Citation Format

Share Document