Effects of salinity and temperature on the timing of germinal vesicle breakdown and polar body release in diploid and triploid Hong Kong oysters, Crassostrea hongkongensis , in relation to tetraploid induction

2018 ◽  
Vol 49 (11) ◽  
pp. 3647-3657 ◽  
Author(s):  
Yanping Qin ◽  
Shu Xiao ◽  
Haitao Ma ◽  
Riguan Mo ◽  
Zihua Zhou ◽  
...  
2019 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background. OLA1 is a member of the GTPase protein family, unlike other members, it can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods. In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results. Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


Development ◽  
1991 ◽  
Vol 112 (4) ◽  
pp. 971-980 ◽  
Author(s):  
H. Alexandre ◽  
A. Van Cauwenberge ◽  
Y. Tsukitani ◽  
J. Mulnard

Okadaic acid (OA), a potent inhibitor of types 1 and 2A protein phosphatases, was shown recently to induce chromatin condensation and germinal vesicle breakdown (GVBD) in mouse oocytes arrested at the dictyate stage by dibutyryl cAMP (dbcAMP), isobutyl methylxanthine (IBMX) and 12,13-phorbol dibutyrate (PDBu). We confirm these results using IBMX and another phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA) and show that OA also bypasses the inhibitory effect of 6-dimethylaminopurine (6-DMAP). It has been concluded that protein phosphatases 1 and/or 2A (PP1, 2A), involved in the negative control of MPF activation, are thus operating downstream from both the protein kinase A and protein kinase C catalysed phosphorylation steps that prevent the breakdown of GV. Similar enzymatic activities are also able to counteract the general inhibition of protein phosphorylation. However, PP1 and/or PP2A are positively involved in the activation of pericentriolar material (PCM) into microtubule organizing centres (MTOCs). This explains the inhibitory effect of OA on spindle assembly. Finally, OA interferes with the integrity and/or function of actomyosin filaments. This results in a dramatic ruffling of the plasma membrane leading to the internalization of large vacuoles, the inhibition of chromosome centrifugal displacement and, consequently, the prevention of polar body extrusion.


Zygote ◽  
2008 ◽  
Vol 16 (2) ◽  
pp. 135-144
Author(s):  
G. Sánchez Toranzo ◽  
L. Zelarayán ◽  
F. Bonilla ◽  
J. Oterino ◽  
M.I. Bühler

SummaryAmphibian oocytes meiotic arrest is released under the stimulus of progesterone; this hormone interacts with the oocyte surface and starts a cascade of events leading to the activation of a cytoplasmic maturation promoting factor (MPF) that induces germinal vesicle breakdown (GVBD), chromosome condensation and extrusion of the first polar body.The aim of this work was to determine whether the activation of a GABAA receptor is able to induce GVBD in fully grown denuded oocytes of Bufo arenarum and to analyse its possible participation in progesterone-induced maturation. We also evaluated the role of purines and phospholipids in the maturation process induced by a GABAA receptor agonist such as muscimol.Our results indicated that the activation of the GABAA receptor by muscimol induces maturation in a dose- and time-dependent manner and that this activation is a genuine maturation that enables oocytes to form pronuclei. Assays with a receptor antagonist, picrotoxine, showed that the maturation induced by muscimol was inhibited. Treatment with picrotoxine, however, shows that the participation of GABAA receptor in progesterone-induced maturation is not significant.In addition, our results indicate that high intracellular levels of purines obtained by the use of db-AMPc and theophylline or the inhibition of the phosphatidylinositol 4,5-bisphosphate (PIP2 hydrolysis by neomycin and PIP2 turn over by LiCl, respectively, inhibited the maturation induced by muscimol. Treatment with H-7 indicated, however, that PKC activation is not necessary for GVBD induced by the GABAA receptor agonist. Results suggest that the transduction pathway used by the GABAA receptor to induce maturation is different from those used by progesterone.


1986 ◽  
Vol 165 (2) ◽  
pp. 507-517 ◽  
Author(s):  
Elayne A. Bornslaeger ◽  
William T. Poueymirou ◽  
Peter Mattei ◽  
Richard M. Schultz

2009 ◽  
Vol 21 (1) ◽  
pp. 214
Author(s):  
N. Canel ◽  
D. Salamone

Dehydroleucodine (DhL) is a sesquiterpene lactone that inhibits germinal vesicle breakdown in Bufo arenarum oocytes. Its action takes place over early stages of the cdc25 activation cascade (Bühler MI et al. 2007 Zygote 15, 183–187). The aim of this study was to evaluate the potential of DhL to induce parthenogenetic activation by observing nuclear dynamics and second polar body (2PB) extrusion of bovine oocytes, in the presence or absence of Cytochalasin B (CB), comparing these treatments with 6-Dimethylaminopurine (DMAP), an activation agent widely used. Cumulus–oocyte complexes were collected from cow ovaries obtained from a slaughterhouse. They were matured in TCM 199, supplemented with 5% FCS, 10 UI mL–1 penicillin, 10 μg mL–1 FSH, 100 μM cysteamine, 0.3 mm sodium pyruvate and 2 mm glutamine, at 39°C under 6% CO2 in air for 24 h. After removal of cumulus cells, metaphase II (MII) oocytes were selected and treated with 5 μm ionomycin (Io) for 4 min. Afterwards, oocytes were randomly allocated into one of the following treatments: a) incubation with 2 mm DMAP for 3 h (DMAP); b) incubation with 5 μm DhL for 3 h (DhL); and c) incubation with 5 μm DhL and 5 μg mL–1 CB, for 3 h (DhL-CB). A control group was only treated with Io. Activated oocytes were cultured in the maturation medium during 4, 11 or 17 h (Io exposure = 0 h), stained with Hoechst 33342 and analyzed under fluorescence microscope to evaluate nuclear stage and 2PB extrusion. Activation data are presented in Table 1. Oocytes with two extruded polar bodies and a metaphase plate were considered as partially activated (PA) and those exhibiting one pronucleus (PN) or already cleaved, as fully activated (FA). Oocytes that remained arrested at MII were not included in the table. Rates of 2PB emission were 98.3, 4.9, 83.6 and 61.5% for Io, DMAP, DhL and DhL-CB, respectively. These percentages were determined over total number of activated oocytes (PA and FA) within each group, including results from all evaluation times because no differences were found between them. Nuclear evaluation suggests that DhL is as effective as DMAP to induce full activation when combined with CB, and its use does not induce the early PN formation observed with DMAP at 4 h post Io. Most of the oocytes activated with DhL extruded a 2PB; these results were statistically different from those observed for other groups. These results indicate that DhL might be a useful agent to induce parthenogenesis, allowing 2PB extrusion and avoiding early PN formation in bovine oocytes. Table 1.Partial and full activation of bovine oocytes at 4, 11 and 17 h post treatments


Reproduction ◽  
2009 ◽  
Vol 138 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Svetlana Uzbekova ◽  
Mohamad Salhab ◽  
Christine Perreau ◽  
Pascal Mermillod ◽  
Joëlle Dupont

Glycogen synthase kinase 3 (GSK3) regulates cellular metabolism and cell cycle via different signalling pathways. In response to insulin and growth factors GSK3 is serine-phosphorylated and inactivated. We analysed GSK3B expression and activation in bovine cumulus cells (CC) and oocytes at different meiotic stagesin vitroin parallel with MAP kinases ERK (MAPK3/MAPK1) and p38 (MAPK14). GSK3B localised to cytoplasm in granulosa cells and in oocytes throughout folliculogenesis. In mature metaphase-II (MII) oocytes, GSK3B was concentrated to the region of midzone between the oocyte and the first polar body, as well as active phospho-Thr Aurora A kinase (AURKA). Duringin vitromaturation (IVM), in oocytes, phospho-Ser9-GSK3B level increased as well as phospho-MAPK3/MAPK1, while phospho-MAPK14 decreased. In CC, phospho-MAPK14 increased upon germinal vesicle breakdown (GVBD)/metaphase-I (MI) and then decreased during transition to MII. Administration of inhibitors of GSK3 activity (lithium chloride or 2′Z,3′E -6-bromoindirubin-3′-oxime) rapidly increased phospho-Ser9-GSK3B, and led to transient decrease of phospho-MAPK3/MAPK1 and to durable enhancing of phospho-MAPK14 in granulosa primary cell culture. GSK3 inhibitors during IVM diminished cumulus expansion and delayed meiotic progression. In cumulus, phospho-MAPK14 level was significantly higher in the presence of inhibitors, comparing with control, through the time of MI/MII transition. In oocytes, phospho-GSK3B was increased and phospho-MAPK3/MAPK1 was decreased before GVBD and oocytes were mainly arrested at MI. Therefore, GSK3B might regulate oocyte meiosis, notably MI/MII transition being the part of MAPK3/1 and MAPK14 pathways in oocytes and CC. GSK3B might be also involved in the local activation of AURKA that controls this transition.


2008 ◽  
Vol 24 (4) ◽  
pp. 227-234 ◽  
Author(s):  
SY Hou ◽  
L Zhang ◽  
K Wu ◽  
L Xia

Previous studies have shown that thioglycolic acid (TGA) leads to potential reproductive toxicology. To clarify the exact effects of this compound on reproduction, mice oocytes were treated with different TGA doses. At the end of the culture period, the nuclear status of mice oocytes was assessed under an inverted microscope. After immunofluorescence staining, the chromosomal arrangement and spindle configuration of oocytes were evaluated. The results indicated that TGA decreases the percentage of first polar body formation but does not influence that of germinal vesicle breakdown. TGA induces abnormal chromosomal arrangement and spindle elongation. In conclusion, TGA inhibits in-vitro maturation of mice oocytes and affects chromosomal arrangement and spindle configuration. Furthermore, it probably interferes with biochemical changes that occur during meiosis, resulting in aberrant development.


Reproduction ◽  
2005 ◽  
Vol 129 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Zhen-Yu Zheng ◽  
Qing-Zhang Li ◽  
Da-Yuan Chen ◽  
Heide Schatten ◽  
Qing-Yuan Sun

The protein kinase Cs (PKCs) are a family of Ser/Thr protein kinases categorized into three subfamilies: classical, novel, and atypical. The phosphorylation of PKC in germ cells is not well defined. In this study, we described the subcellular localization of phopho-PKC in the process of mouse oocyte maturation, fertilization, and early embryonic mitosis. Confocal microscopy revealed that phospho-PKC (pan) was distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, phospho-PKC was localized in the vicinity of the condensed chromosomes, distributed in the whole meiotic spindle, and concentrated at the spindle poles. After metaphase I, phospho-PKC was translocated gradually to the spindle mid-zone during emission of the first polar body. After sperm penetration and electrical activation, the distribution of phospho-PKC was moved from the spindle poles to the spindle mid-zone. After the extrusion of the second polar body (PB2) phospho-PKC was localized in the area between the oocyte and the PB2. In fertilized eggs, phospho-PKC was concentrated in the pronuclei except for the nucleolus. Phospho-PKC was dispersed after pronuclear envelope breakdown, but distributed on the entire spindle at mitotic metaphase. The results suggest that PKC activation may play important roles in regulating spindle organization and stabilization, polar-body extrusion, and nuclear activity during mouse oocyte meiosis, fertilization, and early embryonic mitosis.


2016 ◽  
Vol 27 (11) ◽  
pp. 1776-1785 ◽  
Author(s):  
Chunjie Huang ◽  
Di Wu ◽  
Faheem Ahmed Khan ◽  
Xiaofei Jiao ◽  
Kaifeng Guan ◽  
...  

In mammals, a finite population of oocytes is generated during embryogenesis, and proper oocyte meiotic divisions are crucial for fertility. Sperm-associated antigen 1 (SPAG-1) has been implicated in infertility and tumorigenesis; however, its relevance in cell cycle programs remains rudimentary. Here we explore a novel role of SPAG-1 during oocyte meiotic progression. SPAG-1 associated with meiotic spindles and its depletion severely compromised M-phase entry (germinal vesicle breakdown [GVBD]) and polar body extrusion. The GVBD defect observed was due to an increase in intraoocyte cAMP abundance and decrease in ATP production, as confirmed by the activation of AMP-dependent kinase (AMPK). SPAG-1 RNA interference (RNAi)–elicited defective spindle morphogenesis was evidenced by the dysfunction of γ-tubulin, which resulted from substantially reduced phosphorylation of MAPK and irregularly dispersed distribution of phospho-MAPK around spindles instead of concentration at spindle poles. Significantly, actin expression abruptly decreased and formation of cortical granule–free domains, actin caps, and contractile ring disrupted by SPAG-1 RNAi. In addition, the spindle assembly checkpoint remained functional upon SPAG-1 depletion. The findings broaden our knowledge of SPAG-1, showing that it exerts a role in oocyte meiotic execution via its involvement in AMPK and MAPK signaling pathways.


Author(s):  
Luyao Zhang ◽  
Zichuan Wang ◽  
Tengfei Lu ◽  
Lin Meng ◽  
Yan Luo ◽  
...  

Overweight or obese women seeking pregnancy is becoming increasingly common. Human maternal obesity gives rise to detrimental effects during reproduction. Emerging evidence has shown that these abnormities are likely attributed to oocyte quality. Oxidative stress induces poor oocyte conditions, but whether mitochondrial calcium homeostasis plays a key role in oocyte status remains unresolved. Here, we established a mitochondrial Ca2+ overload model in mouse oocytes. Knockdown gatekeepers of the mitochondrial Ca2+ uniporters Micu1 and Micu2 as well as the mitochondrial sodium calcium exchanger NCLX in oocytes both increased oocytes mitochondrial Ca2+ concentration. The overload of mitochondria Ca2+ in oocytes impaired mitochondrial function, leaded to oxidative stress, and changed protein kinase A (PKA) signaling associated gene expression as well as delayed meiotic resumption. Using this model, we aimed to determine the mechanism of delayed meiosis caused by mitochondrial Ca2+ overload, and whether oocyte-specific inhibition of mitochondrial Ca2+ influx could improve the reproductive abnormalities seen within obesity. Germinal vesicle breakdown stage (GVBD) and extrusion of first polar body (PB1) are two indicators of meiosis maturation. As expected, the percentage of oocytes that successfully progress to the germinal vesicle breakdown stage and extrude the first polar body during in vitro culture was increased significantly, and the expression of PKA signaling genes and mitochondrial function recovered after appropriate mitochondrial Ca2+ regulation. Additionally, some indicators of mitochondrial performance—such as adenosine triphosphate (ATP) and reactive oxygen species (ROS) levels and mitochondrial membrane potential—recovered to normal. These results suggest that the regulation of mitochondrial Ca2+ uptake in mouse oocytes has a significant role during oocyte maturation as well as PKA signaling and that proper mitochondrial Ca2+ reductions in obese oocytes can recover mitochondrial performance and improve obesity-associated oocyte quality.


Sign in / Sign up

Export Citation Format

Share Document