Successional patterns of bacterial communities and their functions in shrimp aquaculture pond water across farming phases

2021 ◽  
Author(s):  
Pengfei Zhan ◽  
Ling Li ◽  
Chen Tang ◽  
Ping Yang ◽  
Hangwei Hu ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1461
Author(s):  
Hao Fang ◽  
Nan Ye ◽  
Kailong Huang ◽  
Junnan Yu ◽  
Shuai Zhang

Shrimp aquaculture environments are a natural reservoir of multiple antibiotic resistance genes (ARGs) due to the overuse of antibiotics. Nowadays, the prevalence of these kinds of emerging contaminants in shrimp aquaculture environments is still unclear. In this study, high-throughput sequencing techniques were used to analyze the distribution of ARGs and mobile genetic elements (MGEs), bacterial communities, and their correlations in water and sediment samples in two types of typical shrimp (Procambarus clarkii and Macrobrachium rosenbergii) freshwater aquaculture environments. A total of 318 ARG subtypes within 19 ARG types were detected in all the samples. The biodiversity and relative abundance of ARGs in sediment samples showed much higher levels compared to water samples from all ponds in the study area. Bacitracin (17.44–82.82%) and multidrug (8.57–49.70%) were dominant ARG types in P. clarkii ponds, while sulfonamide (26.33–39.59%) and bacitracin (12.75–37.11%) were dominant ARG types in M. rosenbergii ponds. Network analysis underlined the complex co-occurrence patterns between bacterial communities and ARGs. Proteobacteria, Cyanobacteria, and Actinobacteria exhibited a high abundance in all samples, in which C39 (OTU25355) and Hydrogenophaga (OTU162961) played important roles in the dissemination of and variation in ARGs based on their strong connections between ARGs and bacterial communities. Furthermore, pathogens (e.g., Aeromonadaceae (OTU195200) and Microbacteriaceae (OTU16033)), which were potential hosts for various ARGs, may accelerate the propagation of ARGs and be harmful to human health via horizontal gene transfer mediated by MGEs. Variation partitioning analysis further confirmed that MGEs were the most crucial contributor (74.76%) driving the resistome alteration. This study may help us to understand the non-ignorable correlations among ARGs, bacterial diversity, and MGEs in the shrimp freshwater aquaculture environments.


2018 ◽  
Vol 9 ◽  
Author(s):  
Yustian Rovi Alfiansah ◽  
Christiane Hassenrück ◽  
Andreas Kunzmann ◽  
Arief Taslihan ◽  
Jens Harder ◽  
...  

2018 ◽  
Vol 131 ◽  
pp. 49-60 ◽  
Author(s):  
Niken Gusmawati ◽  
Benoît Soulard ◽  
Nazha Selmaoui-Folcher ◽  
Christophe Proisy ◽  
Akhmad Mustafa ◽  
...  

2011 ◽  
Vol 77 (4) ◽  
pp. 657-664 ◽  
Author(s):  
Teeyaporn Keawtawee ◽  
Kimio Fukami ◽  
Putth Songsangjinda ◽  
Pensri Muangyao

2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2088-2094 ◽  
Author(s):  
V. Bhumika ◽  
T. N. R. Srinivas ◽  
K. Ravinder ◽  
P. Anil Kumar

A novel marine, Gram-stain-negative, oxidase- and catalase- positive, rod-shaped bacterium, designated strain AK6T, was isolated from marine aquaculture pond water collected in Andhra Pradesh, India. The fatty acids were dominated by iso-C15 : 0, iso-C17 : 1ω9c, iso-C15 : 1 G, iso-C17 : 0 3-OH and anteiso-C15 : 0. Strain AK6T contained MK-7 as the sole respiratory quinone and phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid and seven unidentified lipids as polar lipids. The DNA G+C content of strain AK6T was 45.6 mol%. Phylogenetic analysis showed that strain AK6T formed a distinct branch within the family Cyclobacteriaceae and clustered with Aquiflexum balticum DSM 16537T and other members of the family Cyclobacteriaceae . 16S rRNA gene sequence analysis confirmed that Aquiflexum balticum DSM 16537T was the nearest neighbour, with pairwise sequence similarity of 90.1 %, while sequence similarity with the other members of the family was <88.5 %. Based on differentiating phenotypic characteristics and phylogenetic inference, strain AK6T is proposed as a representative of a new genus and species of the family Cyclobacteriaceae , as Mariniradius saccharolyticus gen. nov., sp. nov. The type strain of Mariniradius saccharolyticus is AK6T ( = MTCC 11279T = JCM 17389T). Emended descriptions of the genus Aquiflexum and Aquiflexum balticum are also proposed.


2021 ◽  
Author(s):  
Sweta Binod Kumar ◽  
Ambika Hemant Shinde ◽  
Maheshawari Jagadishbhai Behere ◽  
Dhruvi Italiya ◽  
Soumya Haldar

Abstract For the detection of Vibrio bacteria, a kit involving two-step method was developed. In the in first step a specific media was added in the water sample which selectively promote the growth of vibrios and inhibit the growth of other bacteria. The second step involved addition of dye-based sensor (already developed in our previous work) in the sample which detect the active Vibrio and changed the colour of the sample to red/pink. The vibrio detection kit was optimized on five different species of Vibrio (V. cholerae and V. parahaemolyticus, V. campbellii, V. harveyi & V. proteolyticus) and two negative control bacteria (Escherichia coli and Bacillus subtilis). The kit was further evaluated on aquaculture pond water and probiotics used in aquaculture farms. It successfully estimated Vibrio concentration of all the five strains and in aquaculture ponds. The negative control bacteria and probiotics were not sensed by the kit. Hence, the kit developed here is perfect for the detection of Vibrio, especially in aquaculture farms.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
PALLAVI BALIGA ◽  
PUNEETH THADOORU GOOLAPPA ◽  
MALATHI SHEKAR ◽  
S.K. GIRISHA ◽  
RAMESH K.S. ◽  
...  

The biofloc system is an ecologically sustainable shrimp culture system. The conglomerates of beneficial bacteria, algae and protozoa in pond water serve as a water quality management system and as a feed additive to the shrimps. This study aimed to characterise the microbial communities associated with the biofloc pond water and the surface of Penaeus vannamei Boone, 1931, reared in it using the Illumina Miseq sequencing technology. The multiple alpha diversity measures indicated the shrimp surface samples to be richer in diversity than the pond water samples. Analysis of the bacterial community revealed that Proteobacteria, Bacteroidetes, Planctomycetes and Cyanobacteria formed the principal phyla. There was a shift in the relative abundance of bacterial communities at each time point. The operational taxonomic units (OTU) analyses revealed that 18.38 % OTUs were shared by the pond water samples, the shrimp surface samples shared 29.35 % at the three different time points. PICRUST analysis revealed that the bacterial communities in the biofloc rearing water, and shrimp surface, were likely involved in intensive microbial metabolism and core housekeeping functions. The information generated will help understand the bacterial community composition associated with optimal water quality and shrimp health in a biofloc culture system.


Sign in / Sign up

Export Citation Format

Share Document