scholarly journals Cytotoxic T lymphocyte antigen‐4 regulates development of xenogenic graft versus host disease in mice via modulation of host immune responses induced by changes in human T cell engraftment and gene expression

Author(s):  
Chunxu Gao ◽  
Debra Gardner ◽  
Marie‐Clare Theobalds ◽  
Shannon Hitchcock ◽  
Heather Deutsch ◽  
...  
Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3440-3448 ◽  
Author(s):  
G Hoffmann-Fezer ◽  
C Gall ◽  
U Zengerle ◽  
B Kranz ◽  
S Thierfelder

Abstract Surprisingly little graft-versus-host disease (GVHD) has been observed in severe combined immunodeficient (SCID) mice injected intraperitoneally (IP) with human blood lymphocytes (hu-PBL-SCID), which raised the question as to whether GVHD in such a distant species is sporadic or suppressed because of immunologic reasons. After screening for blood T-cell chimerism, we hereby describe generalized lethal xenogeneic human GVHD in unconditioned SCID chimeras, which resembles GVHD in SCID mice injected with allogeneic lymphocytes. We adapted an immunocytochemical slide method for minute cell numbers, which allowed us to follow, by multimarker phenotyping of weekly mouse- tail bleeds, the chimeric status of 100 hu-PBL-SCID injected with 10(7) or 10(8) hu-PBL of Epstein-Barr virus- (EBV-) donors. More than half of the mice showed no or less than 2% T cells. However, 13% to 21% developed substantial blood T-lymphocyte chimerism (10% to 80% human CD+ cells) and high mortality. Immunohistology showed more human CD8+ than CD4+ T cells in the splenic white pulp. The cells developed HLA-DR activation markers and infiltrated the red pulp where human B cells also appeared. Expression of activation and proliferation markers increased within 5 to 6 weeks. Many human CD3+ cells were also found in the portal triads of the liver and in the lung, pancreas, and kidney. The thymus also became heavily infiltrated. The intestines and skin of hu-PBL-SCID were less infiltrated by donor cells than in SCID with allogeneic GVHD. The tongue contained almost no human T cells. Our data show that a relatively low overall incidence of human xenogeneic GVHD, even when high numbers of human PBL are injected, is the consequence of a dichotomy between mice with no or transient T-cell chimerism and a minority of mice with high-blood T-lymphocyte chimerism and GVHD mortality.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3440-3448 ◽  
Author(s):  
G Hoffmann-Fezer ◽  
C Gall ◽  
U Zengerle ◽  
B Kranz ◽  
S Thierfelder

Surprisingly little graft-versus-host disease (GVHD) has been observed in severe combined immunodeficient (SCID) mice injected intraperitoneally (IP) with human blood lymphocytes (hu-PBL-SCID), which raised the question as to whether GVHD in such a distant species is sporadic or suppressed because of immunologic reasons. After screening for blood T-cell chimerism, we hereby describe generalized lethal xenogeneic human GVHD in unconditioned SCID chimeras, which resembles GVHD in SCID mice injected with allogeneic lymphocytes. We adapted an immunocytochemical slide method for minute cell numbers, which allowed us to follow, by multimarker phenotyping of weekly mouse- tail bleeds, the chimeric status of 100 hu-PBL-SCID injected with 10(7) or 10(8) hu-PBL of Epstein-Barr virus- (EBV-) donors. More than half of the mice showed no or less than 2% T cells. However, 13% to 21% developed substantial blood T-lymphocyte chimerism (10% to 80% human CD+ cells) and high mortality. Immunohistology showed more human CD8+ than CD4+ T cells in the splenic white pulp. The cells developed HLA-DR activation markers and infiltrated the red pulp where human B cells also appeared. Expression of activation and proliferation markers increased within 5 to 6 weeks. Many human CD3+ cells were also found in the portal triads of the liver and in the lung, pancreas, and kidney. The thymus also became heavily infiltrated. The intestines and skin of hu-PBL-SCID were less infiltrated by donor cells than in SCID with allogeneic GVHD. The tongue contained almost no human T cells. Our data show that a relatively low overall incidence of human xenogeneic GVHD, even when high numbers of human PBL are injected, is the consequence of a dichotomy between mice with no or transient T-cell chimerism and a minority of mice with high-blood T-lymphocyte chimerism and GVHD mortality.


Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4923-4933 ◽  
Author(s):  
Marie Bleakley ◽  
Brith E. Otterud ◽  
Julia L. Richardt ◽  
Audrey D. Mollerup ◽  
Michael Hudecek ◽  
...  

Abstract T-cell immunotherapy that targets minor histocompatibility (H) antigens presented selectively by recipient hematopoietic cells, including leukemia, could prevent and treat leukemic relapse after hematopoietic cell transplantation without causing graft-versus-host disease. To provide immunotherapy that can be applied to a majority of transplantation recipients, it is necessary to identify leukemia-associated minor H antigens that result from gene polymorphisms that are balanced in the population and presented by common human leukocyte antigen alleles. Current approaches for deriving minor H antigen–specific T cells, which provide essential reagents for the molecular identification and characterization of the polymorphic genes that encode the antigens, rely on in vivo priming and are often unsuccessful. We show that minor H antigen–specific cytotoxic T lymphocyte precursors are found predominantly in the naive CD8+ T-cell subset and provide an efficient strategy for in vitro priming of native T cells to generate T cells to a broad diversity of minor H antigens presented with common human leukocyte antigen alleles. We used this approach to derive a panel of stable cytotoxic T lymphocyte clones for discovery of genes that encode minor H antigens and identify a novel antigen expressed on acute myeloid leukemia stem cells and minimally in graft-versus-host disease target tissues.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yuanyuan Chen ◽  
Ye Zhao ◽  
Qiao Cheng ◽  
Depei Wu ◽  
Haiyan Liu

The mammalian intestinal microbiota is a complex ecosystem that plays an important role in host immune responses. Recent studies have demonstrated that alterations in intestinal microbiota composition are linked to multiple inflammatory diseases in humans, including acute graft-versus-host disease (aGVHD). aGVHD is one of the major obstacles in allogeneic hematopoietic stem cell transplantation (allo-HSCT), characterized by tissue damage in the gastrointestinal (GI) tract, liver, lung, and skin. Here, we review the current understanding of the role of intestinal microbiota in the control of immune responses during aGVHD. Additionally, the possibility of using probiotic strains for potential treatment or prevention of aGVHD will be discussed.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3395-3395
Author(s):  
Daniel Sze ◽  
Tetsuo Yamagishi ◽  
Warren Kaplan ◽  
Ross D. Brown ◽  
Phoebe Joy Ho ◽  
...  

Abstract Previous studies have suggested that expanded T-cell clones are found in the blood of 59% of patients with multiple myeloma. These expanded T-cell clones are associated with prolonged overall survival and thus it has been suggested that they may have anti-tumor activity. We have previously reported similar T-cell clones exist in the peripheral blood of patients with Waldenstrom’s Macroglobulinemia (WM) by using flow cytometry to determine the T cell receptor (TCR) Vβ repertoire. Expanded T-cell clones were detected in 9 of 15 (60%) patient samples. Of the nine patients with TCR Vβ clones, four patients had multiple clones. The TCR Vβ clones were not identical, representing a variety of families across the TCR Vβ repertoire. We have previously found that while the TCRVβ+CD8+CD57 negative subset represents polyclonal populations, the CD57 positive subset represents either monoclonal or biclonal populations. By comparing the genetic profiling of these two subsets from a statistically significant gene list, two genes have been found to be highly upregulated in the CD57 negative polyclonal subset. These two genes are i.) SESN3, a member in the Sorting Nexin (SNX) protein family which is implicated in regulating membrane traffic capable of interaction with phosphatidylinositol-3-phosphate (10.4 fold, p=0.0241); ii.) Epstein-Barr virus induced gene 2 (lymphocyte-specific G protein-coupled receptor) EBI2 (7.4 fold, p=0.0207): This finding is in contrast to previous report that EBI2 is expressed in B-lymphocyte cell lines and in lymphoid tissues but not in T-lymphocyte cell lines or peripheral blood T lymphocytes. For the CD57 positive clonal T cell expansions, consistent with our previous reports, CD28 expression was found to be down regulated by 2.6 fold. There are two genes found to be highly upregulated. They are i.) Granzyme B (4.3 fold, p=0.0337) also called Cytotoxic T-lymphocyte proteinase 2. This enzyme is necessary for target cell lysis in cell-mediated immune responses through caspase-dependent apoptosis; ii.) Granzyme H, also called Cytotoxic T-lymphocyte proteinase and probably necessary for target cell lysis in cell-mediated immune responses. In summary, we have shown that CD57 positive clonal T cell populations exist in some patients with WM. Importantly, microarray results have indicated some genes and proteins that may related to better patients survival as previously demonstrated in patients with Multiple Myeloma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2546-2546
Author(s):  
Victoria Harries ◽  
Rachel Dickinson ◽  
Venetia Bigley ◽  
Matthew Collin

Abstract Abstract 2546 Alemtuzumab-containing reduced intensity transplantation regimens frequently induce a state of partial T cell chimerism in the blood of the recipient. It has been widely shown that partial T cell chimerism is associated with freedom from graft versus host disease (GVHD) and that the occurrence of GVHD is often associated with rapidly rising donor T cell engraftment. The mechanism by which this occurs remains unknown and recipient cells may be killed, out-competed for homeostatic niches or simply diluted out by expanding donor T cells. The skin, a target organ of GVHD, normally contains T cells which enter from the blood in the steady state. Studies in mice have highlighted the gate-keeping function of inflammation in allowing trafficking of host-reactive donor T cells into tissues during conversion from mixed to full donor chimerism in blood. This implies that the equilibration of donor engraftment in the blood and tissue may occur more rapidly in patients at risk for GVHD. To test this hypothesis, we set out to define the relationship between skin and blood donor T cell engraftment in patients with and without GVHD. Methods: We studied a group of 51 patients receiving fludarabine melphalan (FM) conditioning with alemtuzumab 30mg for matched related donors and 60mg for matched unrelated donors. Skin biopsies were obtained at 28 and 100 days post transplant, dermal T cells isolated by migration and chimerism assessed in sex-mismatched transplants by combined immunofluorescence/in situ hybidization for XY chromosomes. Peripheral blood myeloid (CD15+) and T cell (CD3+) chimerism was determined by short tandem repeat amplification at monthly intervals after transplantation. All patients gave consent for clinical follow up and post transplant blood and skin sampling for research purposes, according to protocols approved by the local research ethics committee of Northumberland and North Tyneside. Results: All patients achieved >95% myeloid engraftment by day 100. Median (range) T cell engraftment was variable and significantly higher after MUD transplants: 70% (9-99%) than MRD transplants: 21% (5-85%; Mann Witney p <0.05). The incidence of acute GVHD was also greater after MUD transplantation at 47% (grade I or II) compared with 11% (grade I only) for MRD recipients. Overall a positive correlation was observed between donor T cell engraftment in skin and blood at all time points (r = 0.5792; P 0.0187) and at 100 days (r = 0.6570; P 0.0281). Analysis of the data with respect to GVHD showed a further interesting finding. Patients who developed GVHD had the closest correlation between blood and skin donor engraftment, even when they were in a state of partial T cell chimerism prior to the onset of GVHD. Patients who did not develop GVHD but nonetheless eventually achieved full donor engraftment in the blood tended to show lower levels of donor T cell engraftment in the dermis at day 100. Individual examples of patients who did not develop GVHD are: blood 77%, dermis 37%; blood 77%, dermis 6%; blood 92%, dermis 25%, compared with patients who did develop GVHD: blood 55%, dermis 56%; blood 90%, dermis 75%; blood 100%, dermis 100%. Conclusion: This analysis supports the hypothesis that the equilibration of blood and tissue donor T cells is influenced by GVHD and may offer a means to predict patients at risk of GVHD after withdrawal of immunosuppression or donor lymphocyte infusion. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 33 (15_suppl) ◽  
pp. 7026-7026
Author(s):  
Joseph Rimando ◽  
Steven Larrick ◽  
Nicholas Fowler ◽  
Luciano Castiello ◽  
Syed Abbas Ali ◽  
...  

2010 ◽  
Vol 207 (12) ◽  
pp. 2551-2559 ◽  
Author(s):  
Jörn C. Albring ◽  
Michelle M. Sandau ◽  
Aaron S. Rapaport ◽  
Brian T. Edelson ◽  
Ansuman Satpathy ◽  
...  

Graft-versus-host disease (GVHD) causes significant morbidity and mortality in allogeneic hematopoietic stem cell transplantation (aHSCT), preventing its broader application to non–life-threatening diseases. We show that a single administration of a nondepleting monoclonal antibody specific for the coinhibitory immunoglobulin receptor, B and T lymphocyte associated (BTLA), permanently prevented GVHD when administered at the time of aHSCT. Once GVHD was established, anti-BTLA treatment was unable to reverse disease, suggesting that its mechanism occurs early after aHSCT. Anti-BTLA treatment prevented GVHD independently of its ligand, the costimulatory tumor necrosis factor receptor herpesvirus entry mediator (HVEM), and required BTLA expression by donor-derived T cells. Furthermore, anti-BTLA treatment led to the relative inhibition of CD4+ forkhead box P3− (Foxp3−) effector T cell (T eff cell) expansion compared with precommitted naturally occurring donor-derived CD4+ Foxp3+ regulatory T cell (T reg cell) and allowed for graft-versus-tumor (GVT) effects as well as robust responses to pathogens. These results suggest that BTLA agonism rebalances T cell expansion in lymphopenic hosts after aHSCT, thereby preventing GVHD without global immunosuppression. Thus, targeting BTLA with a monoclonal antibody at the initiation of aHSCT therapy might reduce limitations imposed by histocompatibility and allow broader application to treatment of non–life-threatening diseases.


Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2821-2828 ◽  
Author(s):  
LM Faber ◽  
SA van Luxemburg-Heijs ◽  
WF Veenhof ◽  
R Willemze ◽  
JH Falkenburg

HLA-identical bone marrow transplantation (BMT) is associated with both graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) reactivity. Different T-cell subsets from the bone marrow (BM) graft may be responsible for GVHD and GVL reactivity after BMT. In the etiology of GVHD, not only CD8+ but also CD4+ donor T lymphocytes may play an important role. Here we report a patient with chronic myeloid leukemia (CML) who was transplanted with the BM from his HLA-genotypically identical sister. After BMT there was complete engraftment, but the patient died because of acute GVHD grade III-IV in complete remission. Cytotoxic T-lymphocyte (CTL) lines were generated after BMT using the irradiated leukemic cells from the patient as stimulator cells and the donor-originated peripheral blood mononuclear cells, procured from the patient after BMT, as responder cells. The generated CTL lines showed specific lysis of the recipient lymphocytes and leukemic cells in a 51Cr release assay. Two types of CTL clones could be established from these CTL lines, both phenotypically CD4+. Clone type I showed male-specific HLA-DQ5-restricted lysis of the recipient lymphocytes, but not of the circulating relatively mature leukemic cells from the patient. This may be explained by the low HLA-DQ5 expression of the more mature CML cells. Clone type II showed HLA-DR2-restricted minor histocompatibility antigen-specific lysis of the recipient lymphocytes and leukemic cells. Both types of CTL clones showed antigen-specific cell-mediated growth inhibition of the recipient clonogenic leukemic precursor cells. These CD4+ CTL clones produced several activating cytokines including tumor necrosis factor alpha, interferon gamma, granulocyte-macrophage colony-stimulating factor (GM-CSF), and macrophage CSF. Our results illustrate that these CD4+ CTL clones may have induced GVHD directly by cytolysis and indirectly by activating cytokines. Because both types of CTL clones recognized the recipient leukemic progenitor cells, they may also contribute to GVL reactivity after BMT.


2019 ◽  
Vol 3 (3) ◽  
pp. 110-120 ◽  
Author(s):  
Trivendra Tripathi ◽  
Wenjie Yin ◽  
Yaming Xue ◽  
Sandra Zurawski ◽  
Haruyuki Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document