scholarly journals Edaphic specialization and vegetation zones define elevational range‐sizes for Mt Kinabalu regional flora

Ecography ◽  
2021 ◽  
Author(s):  
Melissa Whitman ◽  
Reed S. Beaman ◽  
Rimi Repin ◽  
Kanehiro Kitayama ◽  
Shin‐Ichiro Aiba ◽  
...  
2019 ◽  
Vol 71 ((suppl.1)) ◽  
pp. 209-243
Author(s):  
J.K.H. Koh ◽  
D.J. Court

This paper discusses the preliminary results of the first comprehensive survey of the spiders of the Bukit Timah Nature Reserve (BTNR) in Singapore. Two plots were established in each of the three zones of vegetation, viz., primary forest, old secondary forest, and maturing secondary forest. They were repeatedly sampled over an 18-month period. Sorting of the collection so far suggests that the three vegetation zones harbour rather different spider assemblages. Only ~9% of the total spider fauna recovered was shared by all three zones. The results have also yielded a preliminary picture of dominance, abundance and rarity. Although first intended to obtain a baseline for future quantitative analyses, the survey became a testing ground to modify and refine methodology so as to conduct future quantitative surveys with greater scientific rigour. Taxonomic work on the samples so far shows that the spiders in the BTNR span over 43 families, of which six families are listed for the first time in Singapore. The tally is summarised in an interim checklist of BTNR spiders. The checklist, with a total of 317 entries, shows that there are 158 described species of spiders in BTNR, of which 25 species are new records for Singapore. Another 159 morphospecies are provisionally recognised as distinct species, some of which may be new to science. Our observations during the survey have allowed us to provide a narrative of BTNR spider diversity against a backdrop of their microhabitat specialisation.


2021 ◽  
Vol 9 (3) ◽  
pp. 465
Author(s):  
Anne A. M. J. Becker ◽  
KC Hill ◽  
Patrick Butaye

Small Indian mongooses (Urva auropunctata) are among the most pervasive predators to disrupt the native ecology on Caribbean islands and are strongly entrenched in their areas of introduction. Few studies, however, have considered the microbial ecology of such biological invasions. In this study, we investigated the gut microbiota of invasive small Indian mongooses in terms of taxonomic diversity and functional potential. To this end, we collected fecal samples from 60 free-roaming mongooses trapped in different vegetation zones on the island Saint Kitts. The core gut microbiome, assessed by 16S rRNA amplicon gene sequencing on the Ion S5TM XL platform, reflects a carnivore-like signature with a dominant abundance of Firmicutes (54.96%), followed by Proteobacteria (13.98%) and Fusobacteria (12.39%), and a relatively minor contribution of Actinobacteria (10.4%) and Bacteroidetes (6.40%). Mongooses trapped at coastal sites exhibited a higher relative abundance of Fusobacterium spp. whereas those trapped in scrubland areas were enriched in Bacteroidetes, but there was no site-specific difference in predicted metabolic properties. Between males and females, beta-diversity was not significantly different and no sex-specific strategies for energy production were observed. However, the relative abundance of Gammaproteobacteria, and more specifically, Enterobacteriaceae, was significantly higher in males. This first description of the microbial profile of small Indian mongooses provides new insights into their bioecology and can serve as a springboard to further elucidating this invasive predator’s impact throughout the Caribbean.


2008 ◽  
Vol 28 (4) ◽  
pp. 1429-1445 ◽  
Author(s):  
Li Jun ◽  
Chen Bing ◽  
Li Xiaofang ◽  
Zhao Yujuan ◽  
Ciren Yangjing ◽  
...  

1994 ◽  
Vol 103 (7) ◽  
pp. Plate7-Plate8
Author(s):  
Michio NOGAMI
Keyword(s):  

Ecology ◽  
2014 ◽  
Vol 95 (8) ◽  
pp. 2134-2143 ◽  
Author(s):  
Kimberly S. Sheldon ◽  
Joshua J. Tewksbury

Author(s):  
Ivo Machar ◽  
Marián Halás ◽  
Zdeněk Opršal

Regional climate changes impacts induce vegetation zones shift to higher altitudes in temperate landscape. This paper deals with applying of regional biogeography model of climate conditions for vegetation zones in Czechia to doctoral programme Regional Geography in Palacky University Olomouc. The model is based on general knowledge of landscape vegetation zonation. Climate data for model come from predicted validated climate database under RCP8.5 scenario since 2100. Ecological data are included in the Biogeography Register database (geobiocoenological data related to landscape for cadastral areas of the Czech Republic). Mathematical principles of modelling are based on set of software solutions with GIS. Students use the model in the frame of the course “Special Approaches to Landscape Research” not only for regional scenarios climate change impacts in landscape scale, but also for assessment of climate conditions for growing capability of agricultural crops or forest trees under climate change on regional level.


Author(s):  
Lindsey Falk

All species of plants and animals occur over a finite area of the Earth’s surface. This is referred to as the species range, and many species ranges have shifted or are predicted to shift with climate change. Scientific models have predicted how these shifts are expected to change and what proportion of the implicated species will go extinct in the process. Most models assume that climatic variables such as temperature and rainfall are solely responsible for these range shifts. However, we know that the success of a species is strongly influenced by both their positive and negative interactions with other species, such as competition, mutualism, predation and herbivory. But how these biotic factors affect species ranges is poorly understood. I am using a field experiment on a species in its native habitat to better understand these interactions.  My study took place in the Canadian Rocky Mountains on populations of the plant Yellow Rattle (Rhinanthus minor). I studied two transects, each with plant populations at low, mid and high elevations. Insect herbivory on plant populations was observed, as well as manipulated, via a pesticide treatment to reduce insect herbivory, and a clipping treatment to simulate natural insect herbivory. Understanding herbivory and herbivore-plant interactions over an elevational gradient may help give us a clearer idea of the complex relationship between the climatic and biotic factors that affect plant species ranges.


2015 ◽  
Vol 7 (3) ◽  
pp. 372-381
Author(s):  
Comfort O. AFOLAYAN ◽  
Michael Olugemi AWODIRAN

The genetic differentiation of Archachatina marginata populations from three different zones of Nigeria was studied with a view to delimiting them into sub-species. One hundred and nineteen (119) snail specimens were collected, comprising of forty (40) specimens from Yenagoa (Mangrove forest) and from Kabba (Guinea Savanna) and thirty nine (39) specimens were from Ile-Ife (Rainforest). Eight parameters of the shell specimens of A. marginata which included height of shell, width of shell, aperture height, aperture width, spire length, spire width, penultimate whorl length and first whorl length were subjected to Principal Component Analysis (PCA) and Canonical Variates Analysis (CVA) to delimit the populations into sub-species. DNA of the various populations was extracted from the foot muscle using CTAB (Cetyl Trimethyl Ammonium Bromide) method, which was subjected to RAPD analysis. The RAPD studies employed five (5) oligonucleotide primers (OPB – 17, OPH – 12, OPH – 17, OPI – 06 and OPU – 14) to amplify DNA from 27 samples of A. marginata selected. All five primers produced different band patterns, and the number of fragments amplified per primer varied. Among them, OPB- 17 gave DNA profiles with more numerous bands than the others primers. Both PCA and CVA produced overlapped clusters of A. marginata specimens from the three vegetation zones. The height of shell was observed to be the most variable feature and preferably the most suitable parameter for population grouping. Analysis of the proportions of polymorphic loci and band sharing based on similarity indices for A. marginata samples indicated a relatively high level of genetic variation in the populations from the three areas.


2018 ◽  
Vol 44 ◽  
pp. 00194
Author(s):  
Krzysztof Wolski ◽  
Tomasz Tymiński ◽  
Grzegorz Chrobak

This paper presents results of numerical modelling of riverbed segment with riparian vegetation performed with use of CCHE2 software. Vegetation zones are places where dynamic of water flow increases. Therefore, there is a need of careful examination of hydraulic impact structure of such zones. Accurate research is necessary and should be performed with use of physical or numerical models, two or three dimensional. Paper presents distribution of velocity and area of water surface for two variants of vegetation deposition acquired in CCHE2D software and modelled for riverbed with distinctive riparian vegetation. Results point to significant (30–40%) increase of maximal velocities in riverbed with riparian vegetation, while directly near the vegetation there were zones with very low velocities. Local damming occurs before vegetal zone. Maximal shear stress in zones with increased velocity is significantly augmented compared to conditions with no vegetation, which can cause more intensive erosion in those zones


Sign in / Sign up

Export Citation Format

Share Document