scholarly journals The impact of fruit fly gut bacteria on the rearing of the parasitic wasp Diachasmimorpha longicaudata

2020 ◽  
Vol 168 (6-7) ◽  
pp. 541-559 ◽  
Author(s):  
Panagiota Koskinioti ◽  
Erica Ras ◽  
Antonios A. Augustinos ◽  
Leo W. Beukeboom ◽  
Kostas D. Mathiopoulos ◽  
...  
2017 ◽  
Vol 114 (37) ◽  
pp. E7822-E7831 ◽  
Author(s):  
Uroš Cerkvenik ◽  
Bram van de Straat ◽  
Sander W. S. Gussekloo ◽  
Johan L. van Leeuwen

Drilling into solid substrates with slender beam-like structures is a mechanical challenge, but is regularly done by female parasitic wasps. The wasp inserts her ovipositor into solid substrates to deposit eggs in hosts, and even seems capable of steering the ovipositor while drilling. The ovipositor generally consists of three longitudinally connected valves that can slide along each other. Alternative valve movements have been hypothesized to be involved in ovipositor damage avoidance and steering during drilling. However, none of the hypotheses have been tested in vivo. We used 3D and 2D motion analysis to quantify the probing behavior of the fruit-fly parasitoidDiachasmimorpha longicaudata(Braconidae) at the levels of the ovipositor and its individual valves. We show that the wasps can steer and curve their ovipositors in any direction relative to their body axis. In a soft substrate, the ovipositors can be inserted without reciprocal motion of the valves. In a stiff substrate, such motions were always observed. This is in agreement with the damage avoidance hypothesis of insertion, as they presumably limit the overall net pushing force. Steering can be achieved by varying the asymmetry of the distal part of the ovipositor by protracting one valve set with respect to the other. Tip asymmetry is enhanced by curving of ventral elements in the absence of an opposing force, possibly due to pretension. Our findings deepen the knowledge of the functioning and evolution of the ovipositor in hymenopterans and may help to improve man-made steerable probes.


2018 ◽  
Vol 5 (7) ◽  
pp. 180237 ◽  
Author(s):  
Awawing A. Andongma ◽  
Lun Wan ◽  
Xue-ping Dong ◽  
Mazarin Akami ◽  
Jin He ◽  
...  

To examine how nutritional quality and resident gut bacteria interplay in improving the fitness of an oligophagous fruit fly, Bactrocera minax , artificial sucrose diets and full diets (sucrose, tryptone and yeast extract) were fed to flies with and without antibiotic supplementation. Furthermore, Klebsiella oxytoca and Citrobacter freundii were supplemented to sucrose-only diets. Flies were maintained in the laboratory and the fitness parameters, male and female longevity, number of copulations and female fecundity, were recorded. Full diet without bacterial depletion significantly increased fecundity and copulation. In the absence of gut bacteria, flies fed with full diets had significantly decreased mean fecundity and copulation rate. Flies that were fed with sucrose diet had a very low copulation rate and produced no eggs. Diet type and the presence of bacteria did not have any effect on the average longevity of male and female flies. Bacterial supplementation in sucrose diets did not improve any of the measured parameters. The results demonstrate that gut bacteria interact with diet to influence mating and reproduction in B. minax . Symbiotic bacteria significantly and positively impact reproduction in B. minax ; however, their impact can only be fully realized when the flies are fed with a nutritionally complete diet.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 525
Author(s):  
Poonnawat Panjad ◽  
Rujipas Yongsawas ◽  
Chainarong Sinpoo ◽  
Chonthicha Pakwan ◽  
Phakamas Subta ◽  
...  

Honeybees, Apis mellifera, are important pollinators of many economically important crops. However, one of the reasons for their decline is pathogenic infection. Nosema disease and American foulbrood (AFB) disease are the most common bee pathogens that propagate in the gut of honeybees. This study investigated the impact of gut-propagating pathogens, including Nosema ceranae and Paenibacillus larvae, on bacterial communities in the gut of A. mellifera using 454-pyrosequencing. Pyrosequencing results showed that N. ceranae was implicated in the elimination of Serratia and the dramatic increase in Snodgrassella and Bartonella in adult bees’ guts, while bacterial communities of P. larvae-infected larvae were not affected by the infection. The results indicated that only N. ceranae had an impact on some core bacteria in the gut of A. mellifera through increasing core gut bacteria, therefore leading to the induction of dysbiosis in the bees’ gut.


2021 ◽  
Author(s):  
Miguel Landum ◽  
Marta Salvado Silva ◽  
Nelson Martins ◽  
Luís Teixeira

AbstractThe microbial community interacting with a host can modulate the outcome of pathogenic infections. For instance, Wolbachia, one of the most prevalent invertebrate endosymbionts, strongly increases resistance of Drosophila melanogaster and other insect hosts, to many RNA viruses. D. melanogaster is also in continuous association with gut bacteria, whose role in antiviral immunity is poorly characterized. Here we asked how gut-colonizing bacteria impact viral titres and host survival, and how these interact with route of infection or Wolbachia presence. We compared germ-free flies and flies associated with two gut bacteria species recently isolated from wild flies (Acetobacter thailandicus and Lactobacillus brevis). We found that Wolbachia-conferred protection to both DCV or FHV is not affected by the presence or absence of these gut bacteria. Flies carrying A. thailandicus have lower DCV loads than germ-free flies, upon systemic infection, but reduced survival, indicating that these bacteria increase resistance to virus and decrease disease tolerance. Association with L. brevis, alone or in combination with A. thailandicus, did not lead to changes in survival to systemic infection. In contrast to the effect on systemic infection, we did not observe an impact of these bacteria on survival or viral loads after oral infection. Overall, the impact of gut-associated bacteria in resistance and tolerance to viruses was mild, when compared with Wolbachia. These results indicate that the effect of gut-associated bacteria to different viral infections, and different routes of infection, is complex and understanding it requires a detailed characterization of several parameters of infection.


2019 ◽  
Vol 72 ◽  
pp. 279
Author(s):  
David A.J. Teulon ◽  
John M. Kean ◽  
Karen F. Armstrong

Fruit flies (Family Tephritidae), in particular the Queensland fruit fly (Bactrocera tryoni; QFF), areone of the biggest biosecurity risks for New Zealand horticulture. New Zealand has one of the bestscience-based biosecurity systems in the world, based on years of experience and sound research. Theintroduction of fruit flies to New Zealand is now well managed in commercial fruit imports, but the riskis rising from growing trade and travel and, in the case of QFF, climatic adaptation and spread to moresouthern localities. Smarter solutions are continually needed to manage this increasing risk, and to dealwith such pests when they arrive. We present a brief summary of current and anticipated research aimedat reducing the likelihood of entry into New Zealand and/or minimising the impact for the fruit flyspecies of greatest threat to New Zealand. Research spans risk assessment, pathway risk management,diagnostics, surveillance and eradication.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Wenjuan Jiang ◽  
Yunbo Shi ◽  
Wenjie Zhao

The accuracy of the magnetic core model is important to the analysis and design of the flux-gate sensor. The Jiles-Atherton model (J-A model) is the mostly used model to describe the hysteresis characteristics of the flux-gate core. But the parameters of J-A model are difficult to identify. In this paper, Fruit Fly Optimization Algorithm (FOA) is proposed to identify the parameters of the J-A model. In order to enhance the performance of the identification, a Modified Fruit Fly Optimization Algorithm (MFOA) is applied to extract the parameters of the flux-gate core. The effectiveness of MFOA is verified through five typical test functions. The influence of variation factor h on the performance of MFOA is discussed. The impact of variation factor h on parameters extraction of hysteresis loop is studied. It is shown that MFOA with appropriate selection of variation factor h will get better performance in the accuracy, stability, and simulation time compared to those of PSO and FOA.


2016 ◽  
Vol 73 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Maria Gisely Camargos ◽  
Clarice Diniz Alvarenga ◽  
Teresinha Augusta Giustolin ◽  
Beatriz Aguiar Jordão Paranhos ◽  
Patrícia Cristina do Carmo Oliveira ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jorge Cancino ◽  
Rubén Leal-Mubarqui ◽  
Roberto Angulo ◽  
Cesar Pérez ◽  
Lucy Tirado

Abstract Different densities prerelease packing and times of lethargy in the fruit fly parasitoids Diachasmimorpha longicaudata (Ashmead) were evaluated in order to standardize the process of chilled insect technique for this species. Adults were kept at densities of 0.048, 0.072, 0.096, 0.120, and 0.144 parasitoids/cm2 before release in a México tower, where thermal lethargy was induced at a temperature of 2 ± 2°C for 45 min. Samples of parasitoids were collected to evaluate mortality, survival, fecundity, and flight capacity. All densities showed a similar mortality, both for males (ca. >10%) and females (ca. <7). There was no effect of density on survival and flight capacity in both sexes. On the other hand, fecundity increased with density, 1.66 sons/♀/day, similar to the control. We conclude that a density of 30,000 pupae per cage (0.144 parasitoids/cm2) is adequate for the massive prerelease packaging of the parasitoid D. longicaudata. Regarding the thermal lethargy period, 180 min under 2 ± 2°C conditions, considered as time for management, does not affect the survival, fecundity, and flight capacity of adults. The results obtained are of great utility to establish prerelease packaging parameters for D. longicaudata used in the biological control of Tephritidae fruit fly populations.


iScience ◽  
2019 ◽  
Vol 19 ◽  
pp. 436-447 ◽  
Author(s):  
Dali Ma ◽  
Maroun Bou-Sleiman ◽  
Pauline Joncour ◽  
Claire-Emmanuelle Indelicato ◽  
Michael Frochaux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document