Local climate mediates spatial and temporal variation in carabid beetle communities in three forests in Mount Odaesan, Korea

2016 ◽  
Vol 42 (2) ◽  
pp. 184-194 ◽  
Author(s):  
YONGHWAN PARK ◽  
JONGKUK KIM ◽  
TEAWOONG JANG ◽  
HEEMUN CHAE ◽  
YASUOKI TAKAMI
Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1019
Author(s):  
Yonghwan Park ◽  
Taewoong Jang ◽  
Jongkuk Kim ◽  
Su-Kyung Kim ◽  
Il-Kwon Kim ◽  
...  

Spatial and temporal variation in ecological environments may result in spatial and temporal variation in communities. Temporal studies of biodiversity are essential for forecasting future changes in community structure and ecosystem function. Therefore, determining the mechanisms that drive temporal change in communities remains an important and interesting challenge in ecology. We quantified spatial and temporal variations in carabid beetle communities and site-specific environmental factors for 5 years at nine study sites on three mountains in the Baekdudaegan Mountain Range, Korea. Carabid beetle communities exhibited significant temporal variation, which was larger than spatial variations between and within mountains. Environmental factors mostly varied between sites within mountains. Community variation was only weakly associated with environmental factors at wide scales, i.e., between sites on three mountains, but was strongly associated at narrow spatial scales, i.e., between sites within one mountain. Our results indicate that temporal variation in communities occurs in response to variations in the local climate, and that the patterns of temporal variation differ between mountains. Thus, temporal surveys of insect communities and climates at local scales are important for predicting temporal changes in the communities.


Author(s):  
Guofeng Zhu ◽  
Zhuanxia Zhang ◽  
Huiwen Guo ◽  
Yu Zhang ◽  
Leilei Yong ◽  
...  

AbstractAs raindrops fall from the cloud base to the ground, evaporation below those clouds affects the rain’s isotope ratio, reduces precipitation in arid areas and impacts the local climate. Therefore, in arid areas with scarce water resources and fragile ecological environments, the below-cloud evaporation is an issue of great concern. Based on 406 event-based precipitation samples collected from 9 stations in the Shiyang river basin (SRB) in the northwest arid area, GMWL and LMWL are compared and the Stewart model is used to study the effect of spatial and temporal variation of below-cloud evaporation on isotope values in different geomorphic units at the SRB. Furthermore, factors influencing below-cloud evaporation are analyzed. The results show that (1) the change of d-excess (Δd) in precipitation at the SRB and the residual ratio of raindrop evaporation (f) vary in time and space. With regards to temporal variation, the intensity of below-cloud evaporation is described by: summer < autumn < winter < spring. Regarding spatial variation, the below-cloud evaporation in mountain areas is weaker than in oases and deserts. The intensity of below-cloud evaporation in mountain areas increases with decreasing altitude, and the below-cloud evaporation in oasis and desert areas is affected by local climatic conditions. (2) Below-cloud evaporation is also affected by local transpiration evaporation, especially around reservoirs. Reservoirs increase the relative humidity of the air nearby, weakening below-cloud evaporation. This study deepens our understanding of the water cycle process in arid areas.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1798
Author(s):  
Xu Wu ◽  
Su Li ◽  
Bin Liu ◽  
Dan Xu

The spatio-temporal variation of precipitation under global warming had been a research hotspot. Snowfall is an important part of precipitation, and its variabilities and trends in different regions have received great attention. In this paper, the Haihe River Basin is used as a case, and we employ the K-means clustering method to divide the basin into four sub-regions. The double temperature threshold method in the form of the exponential equation is used in this study to identify precipitation phase states, based on daily temperature, snowfall, and precipitation data from 43 meteorological stations in and around the Haihe River Basin from 1960 to 1979. Then, daily snowfall data from 1960 to 2016 are established, and the spatial and temporal variation of snowfall in the Haihe River Basin are analyzed according to the snowfall levels as determined by the national meteorological department. The results evalueted in four different zones show that (1) the snowfall at each meteorological station can be effectively estimated at an annual scale through the exponential equation, for which the correlation coefficient of each division is above 0.95, and the relative error is within 5%. (2) Except for the average snowfall and light snowfall, the snowfall and snowfall days of moderate snow, heavy snow, and snowstorm in each division are in the order of Zones III > IV > I > II. (3) The snowfall and the number of snowfall days at different levels both show a decreasing trend, except for the increasing trend of snowfall in Zone I. (4) The interannual variation trend in the snowfall at the different levels are not obvious, except for Zone III, which shows a significant decreasing trend.


Sign in / Sign up

Export Citation Format

Share Document