Effects of background light conditions on thermoperiodic eclosion rhythm of onion flyDelia antiqua

2013 ◽  
Vol 17 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Yasuhiko Watari ◽  
Kazuhiro Tanaka
2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668626 ◽  
Author(s):  
Subo Tian ◽  
Zifan Wang ◽  
Jifeng Yang ◽  
Zichen Huang ◽  
Ruili Wang ◽  
...  

In this study, a visual grading system of vegetable grafting machine was developed. The study described key technology of visual grading system of vegetable grafting machine. First, the contrasting experiment was conducted between acquired images under blue background light and natural light conditions, with the blue background light chosen as lighting source. The Visual C++ platform with open-source computer vision library (Open CV) was used for the image processing. Subsequently, maximum frequency of total number of 0-valued pixels was predicted and used to extract the measurements of scion and rootstock stem diameters. Finally, the developed integrated visual grading system was experimented with 100 scions and rootstock seedlings. The results showed that success rate of grading reached up to 98%. This shows that selection and grading of scion and rootstock could be fully automated with this developed visual grading system. Hence, this technology would be greatly helpful for improving the grading accuracy and efficiency.


2010 ◽  
Vol 10 (23) ◽  
pp. 11839-11849 ◽  
Author(s):  
P. Keckhut ◽  
A. Hauchecorne ◽  
L. Blanot ◽  
K. Hocke ◽  
S. Godin-Beekmann ◽  
...  

Abstract. The GOMOS ozone profiles have been analysed to evaluate the GOMOS ability to capture the long-term ozone evolution at mid-latitudes during the expected recovery phase of the ozone layer. Version 5 of the operational GOMOS ozone data has been compared with data from two of the longest ground-based instruments based on different techniques and already involved with many other previous space instrument validations. Comparisons between ground-based and GOMOS data confirm the occurrence of spurious retrievals mainly occurring since 2006. Using a selected set of data it is shown that some bad retrievals are induced by the increasing dark charge of the detectors combined with an inadequate method for its correction. This effect does not only induce a continuous bias, but is rather exhibiting a bimodal distribution including the correct profiles and the bad retrievals. For long-term analyses it is recommended filtering the data according to background light conditions and star temperature (spectrum shape). The new method of the dark charge estimate proposed to be implemented in the version 6 of the ESA algorithm seems to significantly reduce the occurrence of such effects and should allow to monitor stratospheric ozone using GOMOS data with greater confidence.


2018 ◽  
Author(s):  
Kenji Katayama ◽  
Momona Seki ◽  
Kayoko Tokumitsu ◽  
Woon Yong Sohn

The photocatalytic microchip was demonstrated as an efficient platform of the photocatalytic organic reactions, which features an easy control of the reaction time and light conditions. We demonstrated the photocatalytic decarboxylation and the following adduct reaction inside the microchip and successfully achieved high yields of the products.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541a-541
Author(s):  
Lailiang Cheng ◽  
Leslie H. Fuchigami ◽  
Patrick J. Breen

Bench-grafted Fuji/M26 apple trees were fertigated with different concentrations of nitrogen by using a modified Hoagland solution for 6 weeks, resulting in a range of leaf N from 1.0 to 4.3 g·m–2. Over this range, leaf absorptance increased curvilinearly from 75% to 92.5%. Under high light conditions (1500 (mol·m–2·s–1), the amount of absorbed light in excess of that required to saturate CO2 assimilation decreased with increasing leaf N. Chlorophyll fluorescence measurements revealed that the maximum photosystem II (PSII) efficiency of dark-adapted leaves was relatively constant over the leaf N range except for a slight drop at the lower end. As leaf N increased, non-photochemical quenching under high light declined and there was a corresponding increase in the efficiency with which the absorbed photons were delivered to open PSII centers. Photochemical quenching coefficient decreased significantly at the lower end of the leaf N range. Actual PSII efficiency increased curvilinearly with increasing leaf N, and was highly correlated with light-saturated CO2 assimilation. The fraction of absorbed light potentially used for free radical formation was estimated to be about 10% regardless of the leaf N status. It was concluded that increased thermal dissipation protected leaves from photo-oxidation as leaf N declined.


Sign in / Sign up

Export Citation Format

Share Document