scholarly journals Effects of amniotic fluid on human keratinocyte gene expression ‐ Implications for wound healing

2021 ◽  
Author(s):  
Erika Nyman ◽  
Elvira Lindholm ◽  
Jonathan Rakar ◽  
Johan PE Junker ◽  
Gunnar Kratz
2021 ◽  
Vol 14 (4) ◽  
pp. 301
Author(s):  
Yayoi Kawano ◽  
Viorica Patrulea ◽  
Emmanuelle Sublet ◽  
Gerrit Borchard ◽  
Takuya Iyoda ◽  
...  

Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1219
Author(s):  
Luca Melotti ◽  
Tiziana Martinello ◽  
Anna Perazzi ◽  
Ilaria Iacopetti ◽  
Cinzia Ferrario ◽  
...  

Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 834
Author(s):  
Ekaterina Blinova ◽  
Dmitry Pakhomov ◽  
Denis Shimanovsky ◽  
Marina Kilmyashkina ◽  
Yan Mazov ◽  
...  

Background: The main goal of our study was to explore the wound-healing property of a novel cerium-containing N-acethyl-6-aminohexanoate acid compound and determine key molecular targets of the compound mode of action in diabetic animals. Methods: Cerium N-acetyl-6-aminohexanoate (laboratory name LHT-8-17) as a 10 mg/mL aquatic spray was used as wound experimental topical therapy. LHT-8-17 toxicity was assessed in human skin epidermal cell culture using (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A linear wound was reproduced in 18 outbred white rats with streptozotocin-induced (60 mg/kg i.p.) diabetes; planar cutaneous defect was modelled in 60 C57Bl6 mice with streptozotocin-induced (200 mg/kg i.p.) diabetes and 90 diabetic db/db mice. Firmness of the forming scar was assessed mechanically. Skin defect covering was histologically evaluated on days 5, 10, 15, and 20. Tissue TNF-α, IL-1β and IL-10 levels were determined by quantitative ELISA. Oxidative stress activity was detected by Fe-induced chemiluminescence. Ki-67 expression and CD34 cell positivity were assessed using immunohistochemistry. FGFR3 gene expression was detected by real-time PCR. LHT-8-17 anti-microbial potency was assessed in wound tissues contaminated by MRSA. Results: LHT-8-17 4 mg twice daily accelerated linear and planar wound healing in animals with type 1 and type 2 diabetes. The formulated topical application depressed tissue TNF-α, IL-1β, and oxidative reaction activity along with sustaining both the IL-10 concentration and antioxidant capacity. LHT-8-17 induced Ki-67 positivity of fibroblasts and pro-keratinocytes, upregulated FGFR3 gene expression, and increased tissue vascularization. The formulation possessed anti-microbial properties. Conclusions: The obtained results allow us to consider the formulation as a promising pharmacological agent for diabetic wound topical treatment.


10.1038/14336 ◽  
1999 ◽  
Vol 23 (S3) ◽  
pp. 54-54
Author(s):  
Claire Johnson ◽  
Frank Burslem ◽  
Jerry Lanfear

2021 ◽  
Vol 143 ◽  
pp. 112151
Author(s):  
Doaa H. Assar ◽  
Nagwan Elhabashi ◽  
Abd-Allah A. Mokhbatly ◽  
Amany E. Ragab ◽  
Zizy I. Elbialy ◽  
...  

2014 ◽  
Vol 133 (9) ◽  
pp. 1075-1082 ◽  
Author(s):  
Lauren J. Massingham ◽  
Kirby L. Johnson ◽  
Thomas M. Scholl ◽  
Donna K. Slonim ◽  
Heather C. Wick ◽  
...  

2002 ◽  
Vol 190 (3) ◽  
pp. 375-381 ◽  
Author(s):  
Takuro Kinbara ◽  
Fumiaki Shirasaki ◽  
Shigeru Kawara ◽  
Yutaka Inagaki ◽  
Benoit de Crombrugghe ◽  
...  

2013 ◽  
Vol 40 (5) ◽  
pp. 496 ◽  
Author(s):  
Jung Dug Yang ◽  
Dong Sik Choi ◽  
Young Kyoo Cho ◽  
Taek Kyun Kim ◽  
Jeong Woo Lee ◽  
...  

2001 ◽  
Vol 114 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Y.P. Han ◽  
T.L. Tuan ◽  
H. Wu ◽  
M. Hughes ◽  
W.L. Garner

Tumor necrosis factor-alpha (TNF-(alpha)) is an important mediator during the inflammatory phase of wound healing. Excessive amounts of pro-inflammatory cytokines such as TNF-(alpha) are associated with inflammatory diseases including chronic wounds. Matrix metalloproteinases (MMPs) are involved in matrix re-modeling during wound healing, angiogenesis and tumor metastasis. As with pro-inflammatory cytokines, high levels of MMPs have been found in inflammatory states such as chronic wounds. In this report we relate these two phenomena. TNF-(alpha) stimulates secretion of active MMP-2, a type IV collagenase, in organ-cultured full-thickness human skin. This suggests a mechanism whereby excess inflammation affects normal wound healing. To investigate this observation at the cellular and molecular levels, we examined TNF-(alpha) mediated activation of pro-MMP-2, induction of MT1-MMP, and the intracellular signaling pathways that regulate the proteinase in isolated human dermal fibroblasts. We found that TNF-(alpha) substantially promoted activation of pro-MMP-2 in dermal fibroblasts embedded in type-I collagen. In marked contrast, collagen or TNF-(alpha) individually had little influence on the fibroblast-mediated pro-MMP-2 activation. One well-characterized mechanism for pro-MMP-2 activation is through a membrane type matrix metalloproteinase, such as MT1-MMP. We report that TNF-(alpha) significantly induced MT1-MMP at the mRNA and protein levels when the dermal fibroblasts were grown in collagen. Although the intracellular signaling pathway regulating mt1-mmp gene expression is still obscure, both TNF-(alpha) and collagen activate the NF-(kappa)B pathway. In this report we provide three sets of evidence to support a hypothesis that activation of NF-(kappa)B is essential to induce MT1-MMP expression in fibroblasts after TNF-(alpha) exposure. First, SN50, a peptide inhibitor for NF-(kappa)B nuclear translocation, simultaneously blocked the TNF-(alpha) and collagen mediated MT1-MMP induction and pro-MMP-2 activation. Secondly, TNF-(alpha) induced I(kappa)B to breakdown in fibroblasts within the collagen lattice, a critical step leading to NF-(kappa)B activation. Lastly, a consensus binding site for p65 NF-(kappa)B (TGGAGCTTCC) was found in the 5′-flanking region of human mt1-mmp gene. Based on these results and previous reports, we propose a model to explain TNF-(alpha) activation of MMP-2 in human skin. Activation of NF(kappa)B signaling in fibroblasts embedded in collagen induces mt1-mmp gene expression, which subsequently activates the pro-MMP-2. The findings provide a specific mechanism whereby TNF-(alpha) may affect matrix remodeling during wound healing and other physiological and pathological processes.


Sign in / Sign up

Export Citation Format

Share Document