scholarly journals Heme oxygenase limits Mycobacterium marinum infection‐induced detrimental ferrostatin‐sensitive cell death in zebrafish

FEBS Journal ◽  
2021 ◽  
Author(s):  
Kaiming Luo ◽  
Roland Stocker ◽  
Warwick J Britton ◽  
Kazu Kikuchi ◽  
Stefan H Oehlers
2018 ◽  
Vol 20 (1) ◽  
pp. 39 ◽  
Author(s):  
Shih-Kai Chiang ◽  
Shuen-Ei Chen ◽  
Ling-Chu Chang

Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 496 ◽  
Author(s):  
Sandra Kaiser ◽  
Sibylle Frase ◽  
Lisa Selzner ◽  
Judith-Lisa Lieberum ◽  
Jakob Wollborn ◽  
...  

(1) Background: A detailed understanding of the pathophysiology of hemorrhagic stroke is still missing. We hypothesized that expression of heme oxygenase-1 (HO-1) in microglia functions as a protective signaling pathway. (2) Methods: Hippocampal HT22 neuronal cells were exposed to heme-containing blood components and cell death was determined. We evaluated HO-1-induction and cytokine release by wildtype compared to tissue-specific HO-1-deficient (LyzM-Cre.Hmox1 fl/fl) primary microglia (PMG). In a study involving 46 patients with subarachnoid hemorrhage (SAH), relative HO-1 mRNA level in the cerebrospinal fluid were correlated with hematoma size and functional outcome. (3) Results: Neuronal cell death was induced by exposure to whole blood and hemoglobin. HO-1 was induced in microglia following blood exposure. Neuronal cells were protected from cell death by microglia cell medium conditioned with blood. This was associated with a HO-1-dependent increase in monocyte chemotactic protein-1 (MCP-1) production. HO-1 mRNA level in the cerebrospinal fluid of SAH-patients correlated positively with hematoma size. High HO-1 mRNA level in relation to hematoma size were associated with improved functional outcome at hospital discharge. (4) Conclusions: Microglial HO-1 induction with endogenous CO production functions as a crucial signaling pathway in blood-induced inflammation, determining microglial MCP-1 production and the extent of neuronal cell death. These results give further insight into the pathophysiology of neuronal damage after SAH and the function of HO-1 in humans.


Heart ◽  
2015 ◽  
Vol 101 (Suppl 4) ◽  
pp. A103.2-A103
Author(s):  
Hatem Maamoun ◽  
Matshediso Zachariah ◽  
Fiona Green ◽  
Abdelali Agouni

2007 ◽  
Vol 36 (4) ◽  
pp. 409-417 ◽  
Author(s):  
Dirk-Jan Slebos ◽  
Stefan W. Ryter ◽  
Marco van der Toorn ◽  
Fang Liu ◽  
Fengli Guo ◽  
...  

2013 ◽  
Vol 35 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Jinbum Bae ◽  
Danbi Lee ◽  
Yun Kyu Kim ◽  
Minchan Gil ◽  
Joo-Yong Lee ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 6 (27) ◽  
pp. 24393-24403 ◽  
Author(s):  
Min-Young Kwon ◽  
Eunhee Park ◽  
Seon-Jin Lee ◽  
Su Wol Chung

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41676 ◽  
Author(s):  
Seung Eun Lee ◽  
Hana Yang ◽  
Seong Il Jeong ◽  
Young-Ho Jin ◽  
Cheung-Seog Park ◽  
...  

2013 ◽  
Vol 305 (3) ◽  
pp. F255-F264 ◽  
Author(s):  
Subhashini Bolisetty ◽  
Amie Traylor ◽  
Abolfazl Zarjou ◽  
Michelle S. Johnson ◽  
Gloria A. Benavides ◽  
...  

Mitochondria are both a source and target of the actions of reactive oxygen species and possess a complex system of inter-related antioxidants that control redox signaling and protect against oxidative stress. Interestingly, the antioxidant enzyme heme oxygenase-1 (HO-1) is not present in the mitochondria despite the fact that the organelle is the site of heme synthesis and contains multiple heme proteins. Detoxification of heme is an important protective mechanism since the reaction of heme with hydrogen peroxide generates pro-oxidant ferryl species capable of propagating oxidative stress and ultimately cell death. We therefore hypothesized that a mitochondrially localized HO-1 would be cytoprotective. To test this, we generated a mitochondria-targeted HO-1 cell line by transfecting HEK293 cells with a plasmid construct containing the manganese superoxide dismutase mitochondria leader sequence fused to HO-1 cDNA (Mito-HO-1). Nontargeted HO-1-overexpressing cells were generated by transfecting HO-1 cDNA (HO-1) or empty vector (Vector). Mitochondrial localization of HO-1 with increased HO activity in the mitochondrial fraction of Mito-HO-1 cells was observed, but a significant decrease in the expression of heme-containing proteins occurred in these cells. Both cytosolic HO-1- and Mito-HO-1-expressing cells were protected against hypoxia-dependent cell death and loss of mitochondrial membrane potential, but these effects were more pronounced with Mito-HO-1. Furthermore, decrement in production of tricarboxylic acid cycle intermediates following hypoxia was significantly mitigated in Mito-HO-1 cells. These data suggest that specific mitochondrially targeted HO-1 under acute pathological conditions may have beneficial effects, but the selective advantage of long-term expression is constrained by a negative impact on the synthesis of heme-containing mitochondrial proteins.


Sign in / Sign up

Export Citation Format

Share Document