Investigation of the response of an aluminium plate subjected to repeated low velocity impact using a continuum damage mechanics approach

2014 ◽  
Vol 38 (4) ◽  
pp. 475-488 ◽  
Author(s):  
R. Ghajar ◽  
S. M. R. Khalili ◽  
M. Yarmohammad Tooski ◽  
R. C. Alderliesten
2014 ◽  
Vol 566 ◽  
pp. 463-467
Author(s):  
Pu Xue ◽  
H.H. Chen ◽  
W. Guo

This paper studies the impact damage under low velocity impact for composite laminates based on a nonlinear progressive damage model. Damage evolution is described by the framework of the continuum damage mechanics. The real impact damage status of composite laminates has been used to analyze the residual compressive strength instead of assumptions on damage area after impact. The validity of the methodologies has been demonstrated by comparing the numerical results with the experimental data available in literature. The delamination area has an error of 11.3%. The errors of residual strength and compressive displacement are 8.9% and 15%, which indicate that the numerical results matched well with the experimental data.


2018 ◽  
Vol 53 (12) ◽  
pp. 1717-1734 ◽  
Author(s):  
M Ravandi ◽  
U Kureemun ◽  
M Banu ◽  
WS Teo ◽  
Liu Tong ◽  
...  

This work investigates the effects of interlayer hybrid fiber dispersion on the impact response of carbon-flax epoxy hybrid laminates at low carbon volume fractions, and benchmarks the mechanical performance enhancement against the non-hybrid flax epoxy. Five hybrid laminate stacking sequences with similar carbon-to-flax weight ratio were fabricated and subjected to low-velocity impact at three different energy values, generating non-perforated and perforated damage states. A virtual drop-weight impact test that models intralaminar failure based on continuum damage mechanics approach, and delamination using cohesive elements, was also implemented to evaluate the material behavior and damage development in the composites. Simulation results were then verified against experimental data. Results suggested that positioning stiffer carbon plies at the impact face does not necessarily lead to enhancement of the hybrid's impact properties. On the contrary, flax plies at the impacted side lead to significant improvement in impact resistance compared to the non-hybrid flax composite with similar thickness. Results of finite element analysis showed that carbon plies play a significant role in the hybrid laminate's energy absorption characteristics due to lower failure strain.


2017 ◽  
Vol 121 (1238) ◽  
pp. 515-532 ◽  
Author(s):  
N. Li ◽  
P.H. Chen ◽  
Q. Ye

ABSTRACTA method was developed to predict numerically the damage of composite laminates with multiple plies under low-velocity impact loading. The Puck criterion for 3D stress states was adopted to model the intralaminar damage including matrix cracking and fibre breakage, and to obtain the orientation of the fracture plane due to matrix failure. According to interlaminar delamination mechanism, a new delamination criterion was proposed. The influence of transverse and through-thickness normal stress, interlaminar shear stress and damage conditions of adjacent plies on delamination was considered. In order to predict the impact-induced damage of composite laminates with more plies quickly and efficiently, an approach, which can predict the specific damage of several plies in a single solid element, was proposed by interpolation on the strains of element integration points. Moreover, the proposed model can predict specific failure modes. A good agreement between the predicted delamination shapes and sizes and the experimental results shows correctness of the developed numerical method for predicting low-velocity impact damage on composite laminates.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Shivdayal Patel ◽  
Suhail Ahmad

Stochastic finite-element analysis of composite plates due to low velocity impact (LVI) is studied, considering the material properties (Young's modulii, Poisson's ratio, strengths, and fracture energy) and initial velocity as random parameters. Damage initiation and propagation failure due to matrix cracking are investigated for safety criteria for the LVI. Progressive damage mechanics is employed to predict the stochastic dynamic response of the plates. The Gaussian process response surface method (GPRSM) is presently adopted to determine the probability of failure (Pf). There is a possibility of underestimation of the peak contact force and displacement by 10.7% and 11.03%, respectively, if the scatter in the properties is not considered. The sensitivity-based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite for body armors.


Author(s):  
Shivdayal Patel ◽  
Suhail Ahmad

The low velocity impact on composites has been studied as it leads to serious damage. The damage initiates as an intra ply matrix crack due to shear or bending which propagates further into the interface causing de-lamination between dissimilar plies and fiber breakage. This damage evolves with time and adversely affects the mechanical properties and strength of the composite. Since, multiple cracks in the ply are difficult to track, a progressive damage mechanics approach is used to model this failure. The inter ply failure is modeled using cohesive surfaces between the plies. The low velocity impact on composite plate is studied using finite element method. Impact parameters like velocity of impactor, the mass of the impactor and elastic properties of the material etc. are considered. An explicit central difference integration scheme is used to solve for displacements and impact forces. Progressive damage and failure in composites is modeled; an efficient algorithm has been developed and implemented in the FE code ABAQUS through a user-defined subroutine (VUMAT). Reduced integration yields satisfactory results for the impactor velocity less than or equal to 3 m/s for larger mass impact. However, full integration is recommended to obtain the satisfactory results for the (impactor velocity beyond 3 m/s), high velocity impact involving small masses. For the low velocity impact, the peak contact force and displacement are linear functions of impactor velocity for a constant mass. However, a nonlinear behavior is observed for the variation of mass with a constant striking velocity.


2020 ◽  
Vol 54 (21) ◽  
pp. 2999-3007
Author(s):  
Hüseyin E Yalkın ◽  
Ramazan Karakuzu ◽  
Tuba Alpyıldız

The aim of the study is to investigate the behavior of laminated composites under low velocity impact both experimentally and numerically. With this aim, the effects of wide range impact energy values between 10 J and 60 J were evaluated experimentally and numerically for the laminate of [±45/(0/90)2]S oriented unidirectional E-glass as reinforcing material and epoxy resin for matrix material. Different impactor velocities were used to maintain the impact energy values and experimental impact tests were generated with drop weight impact testing machine at room temperature. Numerical simulations were performed using LS-DYNA finite element analysis software with a continuum damage mechanics-based material model MAT058. Contact force between impactor and laminate, and transverse deflection at the center of laminate results were obtained as a function of time and used to plot contact force–time curves, contact force–deflection curves and absorbed energy-impact energy curves. Also, delamination area was examined. Finally, numerical results were compared with experimental results and a good correlation between them was observed.


Author(s):  
Hussein Dalfi

Advanced composite laminates (i.e. glass composite laminates) are highly susceptible to low velocity impact, and the induced damage failures substantially reduced their residual mechanical properties and safe-service life during their application. Therefore, experiments and simulation efforts to predict their low-velocity impact damages and energy absorbing have significant importance in composite structures design. In this regards, experimental and finite element analysis (FEA) with aiding Abaqus software were respectively performed to investigate the influence of yarn hybridisation on the response of composite laminates under low velocity impact. The hybrid yarns, which consisted of S-glass and polypropylene yarns have been used to manufacture two types of composites; non-crimp cross-ply hybrid yarns and twill hybrid fabric composites. Additionally, for comparison, the non-crimp cross-ply and twill fabric composite laminates have been made from glass fibres only. The vacuum infusion resin process has been adopted to manufacture these composite laminates. The impact performance of composite laminates has been investigated using low-velocity impact at 15 J, 35, and 50 impact energy levels. The numerical analysis was executed using Abaqus/Explicit and Hashin failure criteria and continuum damage mechanics by using homogenous shell were adopted to simulate the intra-laminar damage in layers. Meanwhile, standard cohesive inter-laminar interfaces that inserted between composite layers with quadratic stress failure criteria have been used to model delamination failures. The numerical results regarding impact force-time, displacement–time and energy-time histories plots, as well as the damage evolution behaviour of matrix crack and fibre fracture, presented an agreement with experimental results.


Author(s):  
Bhushan S. Thatte ◽  
Ajit D. Kelkar

In this paper, the effects of low-velocity impact on the E-Glass Epoxy woven composite laminates under tensile preload are presented. Due to the low-velocity impact loading, laminate suffers an extensive internal damage such as delaminations and the damage on the back face. The effect of preload can significantly change the impact behavior and progressive damage mechanics. Therefore the study of impact damage susceptibility of these woven composite laminates under tensile preload (corresponding to tensile strain) is increasingly important. While considerable experimental and analytical studies have been made on the low velocity impact phenomenon, very little work is reported in the area of effect of preloads on the damage mechanics for E-Glass Epoxy woven composite laminates subjected to low velocity impact. A detailed finite element mosaic model was developed using Virtual Proving Ground (VPG) software. Dynamic analysis was performed using LSDYNA® finite element software. A plate consisting of 10 layers of E-Glass/EPON 862-W (10EG) was modeled using three dimensional orthotropic elastic brick elements. Preload boundary conditions were simulated using in-plane displacement for three different incremental values (0.08% strain, 0.16% strain and 0.24% strain) representing realistic assembly conditions. The simulation results were compared for their maximum load carrying capacity. It was observed that with increase in preload, laminate looses its maximum load carrying capacity.


Sign in / Sign up

Export Citation Format

Share Document