Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties

GCB Bioenergy ◽  
2013 ◽  
Vol 7 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Nele Ameloot ◽  
Steven Sleutel ◽  
K. C. Das ◽  
Jegajeevagan Kanagaratnam ◽  
Stefaan de Neve
2001 ◽  
Vol 31 (5) ◽  
pp. 889-898 ◽  
Author(s):  
J Clive Carlyle ◽  
EK Sadanandan Nambiar

We examined the relationship between net nitrogen (N) mineralization (subsequently termed N mineralization) in the forest floor and mineral soil (0–0.15 m) of 20 Pinus radiata D. Don plantations ranging in age from 23 to 59 years, how mineralization was influenced by soil properties, and its relationship to wood production. Forest floor properties had a narrower relative range than the same set of mineral soil properties. Total N in the litter layer was 5.0–9.5 g·kg–1 compared with 0.23–2.53 g·kg–1 in mineral soil. Laboratory rates of net N mineralization ranged between 1.1 and 9.7 mg·kg–1·day–1 in forest floor and between 0.02 and 0.53 mg·kg–1·day–1 in mineral soil. The range in litter lignin (35.3–48.0%) was especially narrow, despite the large range in stand productivity. Nitrogen mineralized in the forest floor was not correlated with any of the measured forest floor or mineral soil properties. Nitrogen mineralized per unit mineral soil N (ksn) was negatively correlated with the mineral soil N to organic phosphorus ratio (N/Po) (r2 = 0.82). In mineral soil a relationship combining N/Po and total N concentration explained 90% of the variation in N mineralized. Nitrogen mineralized in the forest floor was correlated with that mineralized in the mineral soil when expressed per unit C or N (r2 = 0.54 or 0.57, respectively). Thus, the quality of organic matter in the forest floor partly reflected the quality of organic matter in the mineral soil with respect to N mineralization. Mineralization in mineral soil dominated the net N available to the stand. For sandy soils, wood production (m3·ha–1·year–1) was correlated with N mineralized in the forest floor + mineral soil (r2 = 0.71). In P. radiata stands growing in southern Australia, rates of wood production per unit N mineralized and per unit rainfall appear to be substantially higher than those of a wide range of natural and planted stands in North America.


2011 ◽  
Vol 43 (8) ◽  
pp. 1714-1722 ◽  
Author(s):  
Gerard H. Ros ◽  
Marjoleine C. Hanegraaf ◽  
Ellis Hoffland ◽  
Willem H. van Riemsdijk

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Johann G. Zaller ◽  
Maureen Weber ◽  
Michael Maderthaner ◽  
Edith Gruber ◽  
Eszter Takács ◽  
...  

Abstract Background Glyphosate-based herbicides (GBHs) are among the most often used pesticides. The hundreds of GBHs used worldwide consist of the active ingredient (AI) glyphosate in form of different salts, possibly other AIs, and various mostly undisclosed co-formulants. Pesticide risk assessments are commonly performed using single AIs or GBHs at standard soil conditions without vegetation. In a greenhouse experiment, we established a weed population with common amaranth (Amaranthus retroflexus) to examine the effects of three GBHs (Roundup LB Plus, Roundup PowerFlex, Touchdown Quattro) and their corresponding AIs (salts of glyphosate isopropylammonium, potassium, diammonium) on the activity and physiological biomarkers (glutathione S-transferase, GST; acetylcholine esterase, AChE) of an ecologically relevant earthworm species (Lumbricus terrestris). GBHs and AIs were applied at recommended doses; hand weeding served as control. Experiments were established with two soil types differing in organic matter content (SOM; 3.0% vs. 4.1%) and other properties. Results Earthworm activity (casting and movement activity) decreased after application of glyphosate formulations or active ingredients compared to hand weeding. We found no consistent pattern that formulations had either higher or lower effects on earthworm activity than their active ingredients; rather, differences were substance-specific. Earthworm activity was little affected by soil organic matter levels. Biomarkers remained unaffected by weed control types; GST but not AChE was decreased under high SOM. Water infiltration after a simulated heavy rainfall was interactively affected by weed control types and SOM. Leachate amount was higher after application of formulations than active ingredients and was higher under low SOM. Glyphosate concentrations in soil and leachate were strongly affected by application of formulations or active ingredients and varied with SOM (significant weed control type x SOM interaction). Conclusions We found that both commercial formulations and pure active ingredients can influence earthworms with consequences on important soil functions. Glyphosate products showed increased, reduced or similar effects than pure glyphosate on particular soil functions; soil properties can substantially alter this. Especially at lower SOM, heavy rainfalls could lead to more glyphosate leaching into water bodies. A full disclosure of co-formulants would be necessary to further decipher their specific contributions to these inconsistent effects.


2013 ◽  
Vol 29 (3) ◽  
pp. 333-343 ◽  
Author(s):  
K. Jegajeevagan ◽  
S. Sleutel ◽  
N. Ameloot ◽  
M. A. Kader ◽  
S. De Neve

Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 256 ◽  
Author(s):  
Patrick Nyambo ◽  
Thembalethu Taeni ◽  
Cornelius Chiduza ◽  
Tesfay Araya

Soil acidification is a serious challenge and a major cause of declining soil and crop productivity in the Eastern parts of South Africa (SA). An incubation experiment investigated effects of different maize residue biochar rates on selected soil properties and soil loss in acidic Hutton soils. Biochar amendment rates were 0%, 2.5%, 5%, 7.5%, and 10% (soil weight) laid as a completely randomized design. Soil sampling was done on a 20-day interval for 140 days to give a 5 × 7 factorial experiment. Rainfall simulation was conducted at 60, 100 and 140 days after incubation to quantify soil loss. Relative to the control biochar amendments significantly improved soil physicochemical properties. After 140 days, biochar increased soil pH by between 0.34 to 1.51 points, soil organic carbon (SOC) by 2.2% to 2.34%, and microbial activity (MBC) by 496 to 1615 mg kg−1 compared to control. Soil aggregation (MWD) changes varied from 0.58 mm to 0.70 mm for the duration of the trial. Soil loss significantly decreased by 27% to 70% under biochar amendment compared to control. This indicates that maize residue biochar application has the potential to improve the soil properties and reduce soil loss in the degraded acidic Hutton soil.


Sign in / Sign up

Export Citation Format

Share Document