How Machine Learning Facilitates Decision Making in Emergency Departments: Modelling Diagnostic Test Orders

Author(s):  
Görkem Sariyer ◽  
Mustafa Gökalp Ataman
2020 ◽  
Author(s):  
Moein Enayati ◽  
Mustafa Sir ◽  
Xingyu Zhang ◽  
Sarah Parker ◽  
Elizabeth Duffy ◽  
...  

BACKGROUND Diagnostic decision-making, especially in emergency departments (EDs), is a highly complex cognitive process involving uncertainty and susceptibility to error. A combination of parameters including patient factors (e.g. history, behaviors, complexity, and comorbidity), provider/care-team factors (e.g. cognitive load, information gathering, and synthesis), and system factors (e.g. health information technology, crowding, shift-based work, and interruptions) may contribute to diagnostic errors. Records with potential diagnostic errors have been identified using electronic triggers that flag certain patterns of care (i.e., triggers), such as the escalation of care or death after ED discharge. Sophisticated data analytics and machine learning techniques that can be applied to existing electronic health record (EHR) datasets could shed light on potential risk factors influencing diagnostic decision-making. OBJECTIVE To identify variables contributing to potential diagnostic errors in the ED using large scale EHR data. METHODS We will apply trigger algorithms to EHR data repositories to generate a large dataset of trigger-positive and trigger-negative encounters. Samples from both sets will be validated using medical record reviews where we expect to find a higher number of diagnostic safety problems in the trigger positive subset. Advanced data mining and machine learning techniques will be used to evaluate relationships between certain patient, provider/care-team, and system risk factors and diagnostic safety signals in the statistically matched groups of trigger-positive and trigger-negative charts. RESULTS This study received funding in February 2019, and is approved by the Institutional Review Board at two health systems. Trigger queries are being developed at both organizations and sample cohorts are being labeled using the triggers. Once completed, study data can inform important parameters for future clinical decision support systems to help identify risks that contribute to diagnostic errors. CONCLUSIONS Using large datasets to investigate risk factors (patient, provider/care team, and system-level) in the diagnostic process can provide mechanisms for future monitoring of diagnostic safety.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2018 ◽  
Author(s):  
David John Stracuzzi ◽  
Michael Christopher Darling ◽  
Matthew Gregor Peterson ◽  
Maximillian Gene Chen

2019 ◽  
Vol 3 (s1) ◽  
pp. 60-61
Author(s):  
Kadie Clancy ◽  
Esmaeel Dadashzadeh ◽  
Christof Kaltenmeier ◽  
JB Moses ◽  
Shandong Wu

OBJECTIVES/SPECIFIC AIMS: This retrospective study aims to create and train machine learning models using a radiomic-based feature extraction method for two classification tasks: benign vs. pathologic PI and operation of benefit vs. operation not needed. The long-term goal of our study is to build a computerized model that incorporates both radiomic features and critical non-imaging clinical factors to improve current surgical decision-making when managing PI patients. METHODS/STUDY POPULATION: Searched radiology reports from 2010-2012 via the UPMC MARS Database for reports containing the term “pneumatosis” (subsequently accounting for negations and age restrictions). Our inclusion criteria included: patient age 18 or older, clinical data available at time of CT diagnosis, and PI visualized on manual review of imaging. Cases with intra-abdominal free air were excluded. Collected CT imaging data and an additional 149 clinical data elements per patient for a total of 75 PI cases. Data collection of an additional 225 patients is ongoing. We trained models for two clinically-relevant prediction tasks. The first (referred to as prediction task 1) classifies between benign and pathologic PI. Benign PI is defined as either lack of intraoperative visualization of transmural intestinal necrosis or successful non-operative management until discharge. Pathologic PI is defined as either intraoperative visualization of transmural PI or withdrawal of care and subsequent death during hospitalization. The distribution of data samples for prediction task 1 is 47 benign cases and 38 pathologic cases. The second (referred to as prediction task 2) classifies between whether the patient benefitted from an operation or not. “Operation of benefit” is defined as patients with PI, be it transmural or simply mucosal, who benefited from an operation. “Operation not needed” is defined as patients who were safely discharged without an operation or patients who had an operation, but nothing was found. The distribution of data samples for prediction task 2 is 37 operation not needed cases and 38 operation of benefit cases. An experienced surgical resident from UPMC manually segmented 3D PI ROIs from the CT scans (5 mm Axial cut) for each case. The most concerning ~10-15 cm segment of bowel for necrosis with a 1 cm margin was selected. A total of 7 slices per patient were segmented for consistency. For both prediction task 1 and prediction task 2, we independently completed the following procedure for testing and training: 1.) Extracted radiomic features from the 3D PI ROIs that resulted in 99 total features. 2.) Used LASSO feature selection to determine the subset of the original 99 features that are most significant for performance of the prediction task. 3.) Used leave-one-out cross-validation for testing and training to account for the small dataset size in our preliminary analysis. Implemented and trained several machine learning models (AdaBoost, SVM, and Naive Bayes). 4.) Evaluated the trained models in terms of AUC and Accuracy and determined the ideal model structure based on these performance metrics. RESULTS/ANTICIPATED RESULTS: Prediction Task 1: The top-performing model for this task was an SVM model trained using 19 features. This model had an AUC of 0.79 and an accuracy of 75%. Prediction Task 2: The top-performing model for this task was an SVM model trained using 28 features. This model had an AUC of 0.74 and an accuracy of 64%. DISCUSSION/SIGNIFICANCE OF IMPACT: To the best of our knowledge, this is the first study to use radiomic-based machine learning models for the prediction of tissue ischemia, specifically intestinal ischemia in the setting of PI. In this preliminary study, which serves as a proof of concept, the performance of our models has demonstrated the potential of machine learning based only on radiomic imaging features to have discriminative power for surgical decision-making problems. While many non-imaging-related clinical factors play a role in the gestalt of clinical decision making when PI presents, we have presented radiomic-based models that may augment this decision-making process, especially for more difficult cases when clinical features indicating acute abdomen are absent. It should be noted that prediction task 2, whether or not a patient presenting with PI would benefit from an operation, has lower performance than prediction task 1 and is also a more challenging task for physicians in real clinical environments. While our results are promising and demonstrate potential, we are currently working to increase our dataset to 300 patients to further train and assess our models. References DuBose, Joseph J., et al. “Pneumatosis Intestinalis Predictive Evaluation Study (PIPES): a multicenter epidemiologic study of the Eastern Association for the Surgery of Trauma.” Journal of Trauma and Acute Care Surgery 75.1 (2013): 15-23. Knechtle, Stuart J., Andrew M. Davidoff, and Reed P. Rice. “Pneumatosis intestinalis. Surgical management and clinical outcome.” Annals of Surgery 212.2 (1990): 160.


Med ◽  
2021 ◽  
Author(s):  
Lorenz Adlung ◽  
Yotam Cohen ◽  
Uria Mor ◽  
Eran Elinav

2021 ◽  
pp. 1-36
Author(s):  
Henry Prakken ◽  
Rosa Ratsma

This paper proposes a formal top-level model of explaining the outputs of machine-learning-based decision-making applications and evaluates it experimentally with three data sets. The model draws on AI & law research on argumentation with cases, which models how lawyers draw analogies to past cases and discuss their relevant similarities and differences in terms of relevant factors and dimensions in the problem domain. A case-based approach is natural since the input data of machine-learning applications can be seen as cases. While the approach is motivated by legal decision making, it also applies to other kinds of decision making, such as commercial decisions about loan applications or employee hiring, as long as the outcome is binary and the input conforms to this paper’s factor- or dimension format. The model is top-level in that it can be extended with more refined accounts of similarities and differences between cases. It is shown to overcome several limitations of similar argumentation-based explanation models, which only have binary features and do not represent the tendency of features towards particular outcomes. The results of the experimental evaluation studies indicate that the model may be feasible in practice, but that further development and experimentation is needed to confirm its usefulness as an explanation model. Main challenges here are selecting from a large number of possible explanations, reducing the number of features in the explanations and adding more meaningful information to them. It also remains to be investigated how suitable our approach is for explaining non-linear models.


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


2021 ◽  
Vol 11 (8) ◽  
pp. 3296
Author(s):  
Musarrat Hussain ◽  
Jamil Hussain ◽  
Taqdir Ali ◽  
Syed Imran Ali ◽  
Hafiz Syed Muhammad Bilal ◽  
...  

Clinical Practice Guidelines (CPGs) aim to optimize patient care by assisting physicians during the decision-making process. However, guideline adherence is highly affected by its unstructured format and aggregation of background information with disease-specific information. The objective of our study is to extract disease-specific information from CPG for enhancing its adherence ratio. In this research, we propose a semi-automatic mechanism for extracting disease-specific information from CPGs using pattern-matching techniques. We apply supervised and unsupervised machine-learning algorithms on CPG to extract a list of salient terms contributing to distinguishing recommendation sentences (RS) from non-recommendation sentences (NRS). Simultaneously, a group of experts also analyzes the same CPG and extract the initial patterns “Heuristic Patterns” using a group decision-making method, nominal group technique (NGT). We provide the list of salient terms to the experts and ask them to refine their extracted patterns. The experts refine patterns considering the provided salient terms. The extracted heuristic patterns depend on specific terms and suffer from the specialization problem due to synonymy and polysemy. Therefore, we generalize the heuristic patterns to part-of-speech (POS) patterns and unified medical language system (UMLS) patterns, which make the proposed method generalize for all types of CPGs. We evaluated the initial extracted patterns on asthma, rhinosinusitis, and hypertension guidelines with the accuracy of 76.92%, 84.63%, and 89.16%, respectively. The accuracy increased to 78.89%, 85.32%, and 92.07% with refined machine-learning assistive patterns, respectively. Our system assists physicians by locating disease-specific information in the CPGs, which enhances the physicians’ performance and reduces CPG processing time. Additionally, it is beneficial in CPGs content annotation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 339
Author(s):  
Alicia Arredondo Eve ◽  
Elif Tunc ◽  
Yu-Jeh Liu ◽  
Saumya Agrawal ◽  
Huriye Erbak Yilmaz ◽  
...  

Coronary microvascular disease (CMD) is a common form of heart disease in postmenopausal women. It is not due to plaque formation but dysfunction of microvessels that feed the heart muscle. The majority of the patients do not receive a proper diagnosis, are discharged prematurely and must go back to the hospital with persistent symptoms. Because of the lack of diagnostic biomarkers, in the current study, we focused on identifying novel circulating biomarkers of CMV that could potentially be used for developing a diagnostic test. We hypothesized that plasma metabolite composition is different for postmenopausal women with no heart disease, CAD, or CMD. A total of 70 postmenopausal women, 26 healthy individuals, 23 individuals with CMD and 21 individuals with CAD were recruited. Their full health screening and tests were completed. Basic cardiac examination, including detailed clinical history, additional disease and prescribed drugs, were noted. Electrocardiograph, transthoracic echocardiography and laboratory analysis were also obtained. Additionally, we performed full metabolite profiling of plasma samples from these individuals using gas chromatography-mass spectrometry (GC–MS) analysis, identified and classified circulating biomarkers using machine learning approaches. Stearic acid and ornithine levels were significantly higher in postmenopausal women with CMD. In contrast, valine levels were higher for women with CAD. Our research identified potential circulating plasma biomarkers of this debilitating heart disease in postmenopausal women, which will have a clinical impact on diagnostic test design in the future.


Sign in / Sign up

Export Citation Format

Share Document