An overview of papaya seed oil extraction methods

2020 ◽  
Vol 55 (4) ◽  
pp. 1506-1514 ◽  
Author(s):  
Chin Xuan Tan ◽  
Seok Tyug Tan ◽  
Seok Shin Tan
2020 ◽  
Vol 9 (1) ◽  
pp. 77
Author(s):  
Azhari Azhari ◽  
Nilva Mutia ◽  
Ishak Ishak

Papaya is the most beneficial fruit for human health. In addition to the fruit that can be consumed, it turns out papaya seeds can also be used. In addition to the seeds used to be planted as well as only being waste, oil can also be obtained from papaya seeds. One method for obtaining papaya seed oil is a method of extracting heat (requires installation in the process), in general the notion of reflux is extraction with a solvent at its boiling temperature point, for a certain time and the amount of solvent adjusted to air temperature. In this research, papaya seed extraction was carried out, percent yield analysis was carried out, and heavy type analysis of papaya seed oil extraction was carried out. The purpose of this study was to study the variation in extraction time of papaya seeds with solvents on the yield of oil produced. This research was carried out by reacting papaya seeds with hexane solvents at 65 ℃. Where the weight of papaya seeds is 50 gr, and the volume of solvents varied by 300 ml, 400 ml, and 500 ml and the reaction time is 120 minutes, 150 minutes, and 180 minutes. The results showed that the largest papaya seed oil was 34.2% at a volume of 500 ml solvent for 180 minutes and a high density of 0.87 gr / ml at a volume of 500 ml solvent for 180 minutes.Keywords: Extraction, hexane, papaya seed oil, reflux


2021 ◽  
Vol 8 ◽  
Author(s):  
Yong-Sung Park ◽  
Il-doo Kim ◽  
Sanjeev Kumar Dhungana ◽  
Eun-Jung Park ◽  
Jae-Jung Park ◽  
...  

Lemon (Citrus limon Burm. f.) is one of the most widely produced and consumed fruits in the world. The seeds of lemon are generally discarded as waste. The purpose of this study was to investigate the quality characteristics and antioxidant potential of lemon seed oil obtained by four extraction methods (roasted-pressing at 170°C, RP-170; roasted-pressing at 100°C, RP-100; cold-pressing, CP; and supercritical fluid, SF). No significant differences in the viscosity, density, and refractive index were observed in the oil obtained from different methods. In the case of Hunter's value, L (lightness) and b (yellowness) values of SF were higher than those of the others. The oil obtained by the CP method exhibited higher levels of Ca (252.17 mg/kg), Cu (2.38 mg/kg), K (225.98 mg/kg), and Mo (0.47 mg/kg) than that of other methods. The highest contents of total phenols (165.90 mg/mL) and flavonoids (21.69 mg/mL) were significantly high in oil obtained by the SF method. Oleic and linoleic acids consisted of principal fatty acids, which were significantly higher in oil obtained by RP-170. Higher amounts of volatile flavor compounds, such as γ-terpinene, sabinene, and limonene, were observed in CP compared to those observed for the other methods. This study elucidates the effects of different methods of oil extraction on the composition of lemon seed oil and highlights potential applications of these benefits in the food, cosmetic, pharmaceutical, and/or fragrance industries.


2005 ◽  
Vol 107 (3) ◽  
pp. 180-186 ◽  
Author(s):  
Juan Carlos López-Martínez ◽  
Pablo Campra-Madrid ◽  
Miguel Ángel Rincón-Cervera ◽  
José Luis Guil-Guerrero

2021 ◽  
Author(s):  
Mohammad Anwar ◽  
Mohammad G. Rasul ◽  
Nanjappa Ashwath ◽  
Muhammad M. K. Bhuiya
Keyword(s):  
Seed Oil ◽  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Foluso O. Agunbiade ◽  
Tolulope A. Adewole

The future of fossil fuel sources of energy has necessitated the need to search for renewable alternatives. Thus, Carica papaya seed oil (CPSO) was employed as feedstock for the production of biodiesel by methanolysis. The seed was obtained locally, dried, and extracted with n-hexane. The CPSO was analyzed for specific gravity, viscosity, iodine value, and saponification value, among others using standard methods. The oil was transesterified by two-stage catalysis with oil to methanol mole ratio of 1 : 9. The biodiesel produced was subjected to standard fuel tests. The seed has an oil yield of 31.2% which is commercially viable. The kinematic viscosity of the oil at 313 K was 27.4 mm2s−1 while that of Carica papaya oil methylester (CPOME) was reduced to 3.57 mm2s−1 and the specific gravity was 0.84 comparable with other seed-oil biodiesels and number 2 diesel. Other oil properties were compared favourably with seed oils already documented for biodiesel synthesis. CPOME’s cloud and pour points were 275 K and 274 K, respectively, and relatively higher than other biodiesels and number 2 diesel. CPOME exhibits moderate corrosion of copper strip. The methanolysis improved the fuel properties of the CPOME similar to other biodiesels. CPSO therefore exhibits a potential for biodiesel production.


Author(s):  
Kenechi Nwosu-Obieogu ◽  
Goziya W. Dzarma ◽  
Chijioke B. Ugwuodo ◽  
Linus I. Chiemenem ◽  
Kelechi N. Akatobi

Sign in / Sign up

Export Citation Format

Share Document