scholarly journals PROSES EKSTRAKSI MINYAK DARI BIJI PEPAYA (CARICA PAPAYA) DENGAN MENGGUNAKAN PELARUT n-HEKSANA

2020 ◽  
Vol 9 (1) ◽  
pp. 77
Author(s):  
Azhari Azhari ◽  
Nilva Mutia ◽  
Ishak Ishak

Papaya is the most beneficial fruit for human health. In addition to the fruit that can be consumed, it turns out papaya seeds can also be used. In addition to the seeds used to be planted as well as only being waste, oil can also be obtained from papaya seeds. One method for obtaining papaya seed oil is a method of extracting heat (requires installation in the process), in general the notion of reflux is extraction with a solvent at its boiling temperature point, for a certain time and the amount of solvent adjusted to air temperature. In this research, papaya seed extraction was carried out, percent yield analysis was carried out, and heavy type analysis of papaya seed oil extraction was carried out. The purpose of this study was to study the variation in extraction time of papaya seeds with solvents on the yield of oil produced. This research was carried out by reacting papaya seeds with hexane solvents at 65 ℃. Where the weight of papaya seeds is 50 gr, and the volume of solvents varied by 300 ml, 400 ml, and 500 ml and the reaction time is 120 minutes, 150 minutes, and 180 minutes. The results showed that the largest papaya seed oil was 34.2% at a volume of 500 ml solvent for 180 minutes and a high density of 0.87 gr / ml at a volume of 500 ml solvent for 180 minutes.Keywords: Extraction, hexane, papaya seed oil, reflux

2016 ◽  
Vol 85 ◽  
pp. 221-228 ◽  
Author(s):  
Daniel Padoin Chielle ◽  
Daniel Assumpção Bertuol ◽  
Lucas Meili ◽  
Eduardo Hiromitsu Tanabe ◽  
Guilherme Luiz Dotto

2019 ◽  
Vol 4 (1) ◽  
pp. 7-10
Author(s):  
Ninik Mas Ulfa ◽  
Galuh Gondo Kusumo ◽  
Ilil Maidatuz Zulfa

ABSTRAKTumbuhan pepaya (carica papaya L) merupakan tumbuhan tropis yang banyak terdapat di Indonesia. Tumbuhan ini mempunyai banyak manfaatnya mulai dari buah, biji, hingga daunnya. Penelitian pendahuluan menyebutkan buah pepaya mengandung alkaloid dan flavonoid yang berkhasiat sebagai antikanker. Senyawa BenzylIsothiocyanat diketahui banyak terdapat pada biji dan buah pepaya yang sudah matang. Kandungan BenzylIsothiocyanat mempunyai khasiat sebagai antikanker. Pemanfaatan limbah biji pepaya pada penelitian ini untuk membuktikan aktivitas Benzyl-Isothiacyanat yang berkhasiat sebagai antikanker. Penelitian ini merupakan penelitian pendahuluan untuk menganalisis aktivitas antikanker dari Ekstrak kental biji pepaya dengan menggunakan metode BSLT. Konsentrasi ekstrak kentak yang digunakan yaitu 100 ppm, 200 ppm dan 300 ppm masing-masing diujikan pada 10 larva udang dalam air laut. Diperoleh hasil rata-rata kematian pada konsentrasi 100 ppm adalah 4,3, 200 ppm adalah 5,3 dan 300 ppm adalah 6,7. Hasil regresi linearitas menunjukkan aktivitas antikaker pada uji BSLT dari Ekstrak kental biji pepaya dengan LC50 sebesar 163,89 ppm. Dengan demikian ekstrak kental biji pepaya tersebut berpotensi untuk dikembangkan sebagai bahan antikanker alamiKata kunci: Aktivitas antikanker, Carica papaya, metode BSLT.ABSTRACTPapaya plant (carica papaya L) is a tropical plant that is widely found in Indonesian. This plant has many benefits ranging from fruit, seeds, to leaves. Preliminary research says papaya fruit contains alkaloids andflavonoids which are efficacious as anticancer. Benzyl-Isothiocyanat compounds are known to be widely found in ripe papaya seeds and fruit. The content of Benzyl-Isothiocyanat has properties as an anticancer. The use of papaya seed waste in this study is to prove the activity of Benzyl-Isothiacyanat which is efficacious as an anticancer. This research is a preliminary study to analyze the anticancer activity of thick papaya seeds using the BSLT method. The concentrations of used fart extracts were 100 ppm, 200 ppm and 300 ppm each tested on 10 shrimp larvae in seawater. The results of the average mortality at concentrations of 100 ppm were 4.3, 200 ppm were 5.3 and 300 ppm was 6.7. The linearity regression results showed the anticaker activity in the BSLT test from the thick extract of papaya seeds with LC50 of 163.89 ppm. Thus the thick extract of papaya seeds has the potential to be developed as a natural anticancer material.Key Words : Anticancer activity, BSLT method, Carica papaya.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Foluso O. Agunbiade ◽  
Tolulope A. Adewole

The future of fossil fuel sources of energy has necessitated the need to search for renewable alternatives. Thus, Carica papaya seed oil (CPSO) was employed as feedstock for the production of biodiesel by methanolysis. The seed was obtained locally, dried, and extracted with n-hexane. The CPSO was analyzed for specific gravity, viscosity, iodine value, and saponification value, among others using standard methods. The oil was transesterified by two-stage catalysis with oil to methanol mole ratio of 1 : 9. The biodiesel produced was subjected to standard fuel tests. The seed has an oil yield of 31.2% which is commercially viable. The kinematic viscosity of the oil at 313 K was 27.4 mm2s−1 while that of Carica papaya oil methylester (CPOME) was reduced to 3.57 mm2s−1 and the specific gravity was 0.84 comparable with other seed-oil biodiesels and number 2 diesel. Other oil properties were compared favourably with seed oils already documented for biodiesel synthesis. CPOME’s cloud and pour points were 275 K and 274 K, respectively, and relatively higher than other biodiesels and number 2 diesel. CPOME exhibits moderate corrosion of copper strip. The methanolysis improved the fuel properties of the CPOME similar to other biodiesels. CPSO therefore exhibits a potential for biodiesel production.


2020 ◽  
Vol 55 (4) ◽  
pp. 1506-1514 ◽  
Author(s):  
Chin Xuan Tan ◽  
Seok Tyug Tan ◽  
Seok Shin Tan

2019 ◽  
Vol 130 ◽  
pp. 01009
Author(s):  
Fandi Dwiputra Suprianto ◽  
Willyanto Anggono ◽  
Teng Sutrisno ◽  
Daniel William Gunawan ◽  
Gabriel Jeremy Gotama

Fuel oil is one of the important parts to support daily activities. The demand for fuel oil is increasing every year. Therefore, the search for the latest energy source is continuously conducted. Carica papaya L. seed oil is investigated as a renewable energy source replacement part of petroleum diesel fuel. C. papaya seed oil obtained through the extraction process using soxhlet method with n-hexane solvent. Then produce methylester by means of transesterification using 1 % NaOH catalyst and 20 % methanol of the weight of the oil and stirred at 400 rpm for 1 h. A mixture consisting of 10 % C. papaya seed biodiesel and 90 % petroleum diesel fuel, called CPSB-10, produces fuel properties that meet the specified standards by the Indonesian Directorate General of Oil and Gas. From the result of the performance test in a diesel test engine, the maximum brake power and brake thermal are consecutively 30.6 kW and 140.23 N m, the lowest sfc is 268 g kW–1 h–1, and the highest brake thermal efficiency is 32 %.


2021 ◽  
Vol 912 (1) ◽  
pp. 012022
Author(s):  
Iriany ◽  
Taslim ◽  
O Bani ◽  
H L M Purba

Abstract A biomass based low-cost catalyst production has been attempted. This study evaluated papaya seeds as the catalyst precursor for biodiesel synthesis. Dried papaya seed powder was calcined at 500°C for 3 hours to produce papaya seed ash. Then, papaya seed ash was applied as catalyst for transesterification of palm oil and methanol. Catalyst load and reaction time was varied. Papaya seed ash was analyzed by SEM-EDX and biodiesel physical properties was analyzed according to the European standards (EN 14214). SEM-EDX results indicated that papaya seed ash contains a number of minerals such as K2O, MgO and CaO which can function as catalysts in biodiesel synthesis. The produced biodiesel also met European standards. Highest biodiesel yield of 95.6% was obtained for reaction temperature of 60°C, reaction time of 2 hours, catalyst load of 2%, methanol to oil ratio of 12:1. Preliminary research revealed that PSA may be applied as a catalyst in biodiesel synthesis.


Author(s):  
Purushothaman M ◽  
Soujanya H ◽  
Jagadeeshwari S ◽  
Shiva Kumar K

To advance new proof about the counter ripeness action of seeds concentrate of papaya (Carica papaya L.) in test creatures, particularly mice. Male mice (n=20) were assembled into four. The principal bunch got just purified water containing 1% CMC as the controller. Gathering 2, 3 and 4 sequentially got papaya seed concentrate of 2, 4 and 8mg/40 g body weight. All conduct regulated verbally utilizing abdominal sonde once every day for 35 days. Revision boundaries surveyed cell checks, the distance across and epithelial chunkiness of seminiferous tubules of the testis. Even though the aftereffects of exploration on the antifertility action of papaya seed separate demonstrated an optimistic pattern, yet in-depth confirmation impacts plant arrangements on investigation animals is obligatory suggested World Health Organization. This examination is proposed to advance novel proof counter fruitfulness movement of papaya seed removes in guinea pigs, particularly mice. There is no substantial diverse in the number of spermatogonia among treatment gatherings: spermatocyte and spermatid cells fundamentally diminished by the excerpt, particularly at the most elevated portion. Moreover, the breadth and epithelial thickness of seminiferous tubules of testis are significantly decreased by the concentrate at the portion of 8 mg/40g body weight. Papaya seeds separate as possible to be utilized as against ripeness operator.


2021 ◽  
Vol 12 (6) ◽  
pp. 7787-7795

Natural coagulants are proven to be a good alternative to conventional coagulants with the removal of various pollutants and are environmentally friendly. Despite its advantages, the least studies were carried out on local agro-wastes such as papaya seeds as natural coagulants concerning different operational factors. The study analyzes the main and interactions effect between the coagulant dosage, initial turbidity, and pH on deshelled Carica papaya seeds for turbid water treatment. A 2-level factorial design was used to investigate the main and interaction effects of the main operational factors, viz. coagulant dosage (50-200 mg/L), pH (3-7), and initial turbidity (100-500 NTU) on the turbidity removal of the synthetic turbid water. Based on individual performance, the results suggested that initial turbidity and pH are the most significant factors among the investigated operational factors. In combination, all interactions are significant, but the interaction between initial turbidity and pH is most significant, with 97.2% turbidity removal. Upon application of Carica papaya seed as a natural coagulant in water and wastewater treatment, these operating variables and their interactions are best to be considered.


Sign in / Sign up

Export Citation Format

Share Document