A Perceptual Traffic Jam on Highway N170

2005 ◽  
Vol 14 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Isabel Gauthier ◽  
Kim M. Curby

Whether face processing is modular or not has been the topic of a lively empirical and theoretical debate. In expert observers, the perception of nonface objects in their domain of expertise is remarkably similar to their perception of faces, in patterns of both behavioral performance and brain activation, providing some evidence against the modularity of face perception. However, the studies that have yielded these results do not rule out the possibility that object expertise and face processing occur in spatially overlapping, but functionally independent, brain regions. Recent research using an interference paradigm reveals that expert object (car) processing interferes with face processing. The level of interference was proportional to an individual's level of car expertise. These results may provide the most direct evidence to date that face and object recognition are not functionally independent.

2018 ◽  
Vol 30 (10) ◽  
pp. 1499-1516 ◽  
Author(s):  
Valentinos Zachariou ◽  
Zaid N. Safiullah ◽  
Leslie G. Ungerleider

The fusiform and occipital face areas (FFA and OFA) are functionally defined brain regions in human ventral occipitotemporal cortex associated with face perception. There is an ongoing debate, however, whether these regions are face-specific or whether they also facilitate the perception of nonface object categories. Here, we present evidence that, under certain conditions, bilateral FFA and OFA respond to a nonface category equivalently to faces. In two fMRI sessions, participants performed same–different judgments on two object categories (faces and chairs). In one session, participants differentiated between distinct exemplars of each category, and in the other session, participants differentiated between exemplars that differed only in the shape or spatial configuration of their features (featural/configural differences). During the latter session, the within-category similarity was comparable for both object categories. When differentiating between distinct exemplars of each category, bilateral FFA and OFA responded more strongly to faces than to chairs. In contrast, during featural/configural difference judgments, bilateral FFA and OFA responded equivalently to both object categories. Importantly, during featural/configural difference judgments, the magnitude of activity within FFA and OFA evoked by the chair task predicted the participants' behavioral performance. In contrast, when participants differentiated between distinct chair exemplars, activity within these face regions did not predict the behavioral performance of the chair task. We conclude that, when the within-category similarity of a face and a nonface category is comparable and when the same cognitive strategies used to process a face are applied to a nonface category, the FFA and OFA respond equivalently to that nonface category and faces.


2020 ◽  
Author(s):  
Antonio Maffei ◽  
Paola Sessa

AbstractFace perception arises from a collective activation of brain regions in the occipital, parietal and temporal cortices. Despite wide acknowledgement that these regions act in an intertwined network, the network behavior itself is poorly understood. Here we present a study in which time-varying connectivity estimated from EEG activity elicited by facial expressions presentation was characterized using graph-theoretical measures of node centrality and global network topology. Results revealed that face perception results from a dynamic reshaping of the network architecture, characterized by the emergence of hubs located in the occipital and temporal regions of the scalp. The importance of these nodes can be observed from early stages of visual processing and reaches a climax in the same time-window in which the face-sensitive N170 is observed. Furthermore, using Granger causality, we found that the time-evolving centrality of these nodes is associated with ERP amplitude, providing a direct link between the network state and local neural response. Additionally, investigating global network topology by means of small-worldness and modularity, we found that face processing requires a functional network with a strong small-world organization that maximizes integration, at the cost of segregated subdivisions. Interestingly, we found that this architecture is not static, but instead it is implemented by the network from stimulus onset to ~200 msec. Altogether, this study reveals the event-related changes underlying face processing at the network level, suggesting that a distributed processing mechanism operates through dynamically weighting the contribution of the cortical regions involved.Data AvailabilityData and code related to this manuscript can be accessed through the OSF at this link https://osf.io/hc3sk/?view_only=af52bc4295c044ffbbd3be019cc083f4


2004 ◽  
Vol 92 (3) ◽  
pp. 1830-1839 ◽  
Author(s):  
J. S. Winston ◽  
R.N.A. Henson ◽  
M. R. Fine-Goulden ◽  
R. J. Dolan

The distributed model of face processing proposes an anatomical dissociation between brain regions that encode invariant aspects of faces, such as identity, and those that encode changeable aspects of faces, such as expression. We tested for a neuroanatomical dissociation for identity and expression in face perception using a functional MRI (fMRI) adaptation paradigm. Repeating identity across face pairs led to reduced fMRI signal in fusiform cortex and posterior superior temporal sulcus (STS), whereas repeating emotional expression across pairs led to reduced signal in a more anterior region of STS. These results provide neuroanatomical evidence for the distributed model of face processing and highlight a dissociation within right STS between a caudal segment coding identity and a more rostral region coding emotional expression.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erez Freud ◽  
Andreja Stajduhar ◽  
R. Shayna Rosenbaum ◽  
Galia Avidan ◽  
Tzvi Ganel

AbstractThe unprecedented efforts to minimize the effects of the COVID-19 pandemic introduce a new arena for human face recognition in which faces are partially occluded with masks. Here, we tested the extent to which face masks change the way faces are perceived. To this end, we evaluated face processing abilities for masked and unmasked faces in a large online sample of adult observers (n = 496) using an adapted version of the Cambridge Face Memory Test, a validated measure of face perception abilities in humans. As expected, a substantial decrease in performance was found for masked faces. Importantly, the inclusion of masks also led to a qualitative change in the way masked faces are perceived. In particular, holistic processing, the hallmark of face perception, was disrupted for faces with masks, as suggested by a reduced inversion effect. Similar changes were found whether masks were included during the study or the test phases of the experiment. Together, we provide novel evidence for quantitative and qualitative alterations in the processing of masked faces that could have significant effects on daily activities and social interactions.


Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 412
Author(s):  
Li Cong ◽  
Hideki Miyaguchi ◽  
Chinami Ishizuki

Evidence shows that second language (L2) learning affects cognitive function. Here in this work, we compared brain activation in native speakers of Mandarin (L1) who speak Japanese (L2) between and within two groups (high and low L2 ability) to determine the effect of L2 ability in L1 and L2 speaking tasks, and to map brain regions involved in both tasks. The brain activation during task performance was determined using prefrontal cortex blood flow as a proxy, measured by functional near-infrared spectroscopy (fNIRS). People with low L2 ability showed much more brain activation when speaking L2 than when speaking L1. People with high L2 ability showed high-level brain activation when speaking either L2 or L1. Almost the same high-level brain activation was observed in both ability groups when speaking L2. The high level of activation in people with high L2 ability when speaking either L2 or L1 suggested strong inhibition of the non-spoken language. A wider area of brain activation in people with low compared with high L2 ability when speaking L2 is considered to be attributed to the cognitive load involved in code-switching L1 to L2 with strong inhibition of L1 and the cognitive load involved in using L2.


2019 ◽  
Vol 35 (05) ◽  
pp. 525-533
Author(s):  
Evrim Gülbetekin ◽  
Seda Bayraktar ◽  
Özlenen Özkan ◽  
Hilmi Uysal ◽  
Ömer Özkan

AbstractThe authors tested face discrimination, face recognition, object discrimination, and object recognition in two face transplantation patients (FTPs) who had facial injury since infancy, a patient who had a facial surgery due to a recent wound, and two control subjects. In Experiment 1, the authors showed them original faces and morphed forms of those faces and asked them to rate the similarity between the two. In Experiment 2, they showed old, new, and implicit faces and asked whether they recognized them or not. In Experiment 3, they showed them original objects and morphed forms of those objects and asked them to rate the similarity between the two. In Experiment 4, they showed old, new, and implicit objects and asked whether they recognized them or not. Object discrimination and object recognition performance did not differ between the FTPs and the controls. However, the face discrimination performance of FTP2 and face recognition performance of the FTP1 were poorer than that of the controls were. Therefore, the authors concluded that the structure of the face might affect face processing.


Author(s):  
Matthew C. Hocking ◽  
Robert T. Schultz ◽  
Jane E. Minturn ◽  
Cole Brodsky ◽  
May Albee ◽  
...  

Abstract Objective: The neural mechanisms contributing to the social problems of pediatric brain tumor survivors (PBTS) are unknown. Face processing is important to social communication, social behavior, and peer acceptance. Research with other populations with social difficulties, namely autism spectrum disorder, suggests atypical brain activation in areas important for face processing. This case-controlled functional magnetic resonance imaging (fMRI) study compared brain activation during face processing in PBTS and typically developing (TD) youth. Methods: Participants included 36 age-, gender-, and IQ-matched youth (N = 18 per group). PBTS were at least 5 years from diagnosis and 2 years from the completion of tumor therapy. fMRI data were acquired during a face identity task and a control condition. Groups were compared on activation magnitude within the fusiform gyrus for the faces condition compared to the control condition. Correlational analyses evaluated associations between neuroimaging metrics and indices of social behavior for PBTS participants. Results: Both groups demonstrated face-specific activation within the social brain for the faces condition compared to the control condition. PBTS showed significantly decreased activation for faces in the medial portions of the fusiform gyrus bilaterally compared to TD youth, ps ≤ .004. Higher peak activity in the left fusiform gyrus was associated with better socialization (r = .53, p < .05). Conclusions: This study offers initial evidence of atypical activation in a key face processing area in PBTS. Such atypical activation may underlie some of the social difficulties of PBTS. Social cognitive neuroscience methodologies may elucidate the neurobiological bases for PBTS social behavior.


2018 ◽  
Vol 14 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Indrit Bègue ◽  
Maarten Vaessen ◽  
Jeremy Hofmeister ◽  
Marice Pereira ◽  
Sophie Schwartz ◽  
...  

2018 ◽  
Author(s):  
Rishi Rajalingham ◽  
James J. DiCarlo

Extensive research suggests that the inferior temporal (IT) population supports visual object recognition behavior. However, causal evidence for this hypothesis has been equivocal, particularly beyond the specific case of face-selective sub-regions of IT. Here, we directly tested this hypothesis by pharmacologically inactivating individual, millimeter-scale sub-regions of IT while monkeys performed several object discrimination tasks, interleaved trial-by-trial. First, we observed that IT inactivation resulted in reliable contralateral-biased task-selective behavioral deficits. Moreover, inactivating different IT sub-regions resulted in different patterns of task deficits, each predicted by that sub-region’s neuronal object discriminability. Finally, the similarity between different inactivation effects was tightly related to the anatomical distance between corresponding inactivation sites. Taken together, these results provide direct evidence that IT cortex causally supports general core object recognition, and that the underlying IT codes are topographically organized.


Sign in / Sign up

Export Citation Format

Share Document