Decomposition of 15N-labelled catch-crop residues in soil: evaluation of N mineralization and plant-N uptake potentials under controlled conditions

1995 ◽  
Vol 46 (1) ◽  
pp. 115-123 ◽  
Author(s):  
B. NICOLARDOT ◽  
D. DENYS ◽  
B. LAGACHERIE ◽  
D. CHENEBY ◽  
M. MARIOTTI
Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples

2021 ◽  
Author(s):  
Fabio Olivieri de Nobile ◽  
Alexander Calero Hurtado ◽  
Renato de Mello Prado ◽  
Henrique Antunes de Souza ◽  
Maria Gabriela Anunciação ◽  
...  

Abstract Purpose: This study evaluated nitrogen (N) mineralization dynamics in three soils after the addition of heat-treated urban waste amendments or urban waste compost (UWC). The effects of UWC and urea on soil properties and broccoli and lettuce production were compared. Methods: The first N mineralization experiment was conducted in a factorial arrangement (4 × 3), as a randomized complete block design (RCBD), with three replicates. Four UWC doses: 12.5, 25.0, 37.5, and 50.0 mg dm-3 were applied to three soils: sandy Ustoxic Quartzipsamment (QS), intermediate-texture red Ultisol (US), and clayey red Oxisol (OS), during eight incubation periods (0, 7, 14, 28, 42, 56, 70, and 84 days). In the second experiment, the effects of UWC and urea fertilizer on soil properties were compared. The growth of broccoli and lettuce plants was evaluated (experiments 3 and 4). The treatments (Experiments 2–4) followed a factorial arrangement (4 × 2; RCBD; three replicates), using OS soil. Four N doses (as for experiment 1) were combined with two N sources (UWC and urea). Results: The processed UWC application proportionally increased the N mineralization rate by 72% in QS, 54% in US, and 66% in OS. Furthermore, UWC application enhanced soil properties (pH and nutrient availability), compared with urea fertilizer, and improved N uptake, resulting in higher fresh biomass production in broccoli and lettuce plants (50.0 and 37.5 mg dm-3, respectively). Conclusions: Our findings suggest that heat-treated UWC is an economical, viable, and efficient fertilizer to improve soil properties and short-cycle vegetable crop productivity.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 504 ◽  
Author(s):  
Abou Chehade ◽  
Antichi ◽  
Martelloni ◽  
Frasconi ◽  
Sbrana ◽  
...  

No-till practices reduce soil erosion, conserve soil organic carbon, and enhance soil fertility. Yet, many factors could limit their adoption in organic farming. The present study investigated the effects of tillage and cover cropping on weed biomass, plant growth, yield, and fruit quality of an organic processing tomato (Solanum lycopersicon L. var. Elba F1) over two seasons (2015–2017). We compared systems where processing tomato was transplanted on i) tilled soil following or not a winter cover crop (Trifolium squarrosum L.) and with/without a biodegradable plastic mulch; and ii) no-till where clover was used, after rolling and flaming, as dead mulch. Tomato in no-till suffered from high weed competition and low soil nitrogen availability leading to lower plant growth, N uptake, and yield components with respect to tilled systems. The total yield in no-till declined to 6.8 and 18.3 t ha−1 in 2016 and 2017, respectively, with at least a 65% decrease compared to tilled clover-based systems. No evidence of growth-limiting soil compaction was noticed but a slightly higher soil resistance was in the no-till topsoil. Tillage and cover crop residues did not significantly change tomato quality (pH, total soluble solids, firmness). The incorporation of clover as green manure was generally more advantageous over no-till. This was partly due to the low performance of the cover crop where improvement may limit the obstacles (i.e., N supply and weed infestation) and enable the implementation of no-till in organic vegetable systems.


2005 ◽  
Vol 85 (5) ◽  
pp. 579-587 ◽  
Author(s):  
Y. K. Soon ◽  
S. S. Malhi

The influence o f landscape position on the dynamics of N in the soil-plant system has not been adequately studied. Our aim with this study on a predominantly Black Chernozem soil was to evaluate the effect of slope position (upper vs. lower) and N fertilizer application (none vs. 60 kg N ha-1) on soil and wheat (Triticum aestivum L.) N through the growing season. Landscape position had a dominant effect on soil NO3− and soluble organic N (SON) concentrations, especially in the surface 15 cm. These pools of soil N and net N mineralization were greater at the lower than at the upper slope position. The landscape effect is attributed to higher organic matter content (as measured by organic C) and water availability in lower compared with upper slope positions. Nitrogen application had no measurable effect on soil NO3− and SON concentrations. Exchangeable and non-exchangeable NH4+ were little affected by slope position or N fertilization. Nitrogen application increased wheat N uptake; however, its influence was less than that of slope position, especially on N accumulation in wheat heads during grain-filling. Although N application increased wheat yields, landscape position exerted the greater influence: grain yield was less on upper than lower slope positions due to earlier onset of crop maturity. During grain filling, net N mineralization was suppressed at the upper slope position and by N application. The increase in crop yield and N uptake due to N application was not significantly different between slope positions. This study demonstrated that landscape position had a greater influence on N dynamics and availability than the application of typical amounts of fertilizer N and that the two effects were mostly independent of each other. Key words: Available N, landscape position, N uptake, net N mineralization, soluble organic N


Soil Science ◽  
2014 ◽  
Vol 179 (2) ◽  
pp. 84-94 ◽  
Author(s):  
Nerea Villar ◽  
Ana Aizpurua ◽  
Ander Castellón ◽  
Maria Arritokieta Ortuzar ◽  
Maria Begoña Gonzalez Moro ◽  
...  

2003 ◽  
Vol 81 (7) ◽  
pp. 698-705 ◽  
Author(s):  
Scott M Holub ◽  
Kate Lajtha

We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Müll. Arg., using 15N. We developed a method of labeling lichens with 15N for use in a decomposition study that involved spraying lichen material with a nutrient solution containing 15N-enriched ammonium. Through the first 180 days of sampling, lichens placed in the field during the spring had a smaller decay constant (k = 1.24 year–1) than the lichens placed in the field during the fall (k = 3.1 year–1). However, both spring and fall lichen samples were decomposed beyond recognition after 1 year. Patterns in exogenous N uptake and N concentration did not differ by season. Both spring and fall lichens took up N from the surrounding environment during decay while simultaneously losing N to the environment. The N concentration in both sets of lichen additions increased during decay to a peak of around 2.8% N, equal to a C to N ratio of about 16, and then began to decrease. This indicates that early in decay, net N immobilization occurred in the remaining lichen, but this was followed by net N mineralization in later stages of decay.Key words: decomposition, nitrogen, Lobaria oregana, lichen, mineralization, immobilization.


2018 ◽  
Vol 116 ◽  
pp. 351-359 ◽  
Author(s):  
Xinxing He ◽  
Yuanqi Chen ◽  
Shengjie Liu ◽  
Anna Gunina ◽  
Xiaoli Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document