scholarly journals Comparison of frequency of occurrence of earthquakes with slip rates from long-term seismicity data: the cases of Gulf of Corinth, Sea of Marmara and Dead Sea Fault Zone

2006 ◽  
Vol 165 (2) ◽  
pp. 516-526 ◽  
Author(s):  
N. N. Ambraseys
Author(s):  
John P. Craddock ◽  
Perach Nuriel ◽  
Andrew R.C. Kylander-Clark ◽  
Bradley R. Hacker ◽  
John Luczaj ◽  
...  

The onset of the Dead Sea transform has recently been reevaluated by U-Pb age-strain analyses of fault-related calcite taken from several fault strands along its main 500-km-long sector. The results suggest that the relative motion between Africa and Arabia north of the Red Sea was transferred northward to the Dead Sea transform as early as 20 Ma and along a ∼10-km-wide deformation zone that formed the central rift with contemporaneous bounding sinistral motion. The Gishron fault is the western bounding fault with normal and sinistral fault offsets that placed Proterozoic crystalline rocks and a cover of Cambrian sandstones in fault contact with Cretaceous-Eocene carbonates. Fault-related calcite veins are common in the Gishron fault zone, and we report the results of a detailed study of one sample with nine calcite fillings. Low fluid inclusion entrapment temperatures <50 °C, stable isotopes values of −3.3−0‰ (δ13C) and −15 to −13‰ (δ18O), and low rare earth element (REE) concentrations within the nine calcite fault fillings indicate that a local, meteoric fluid fed the Gishron fault zone over ca. 7 Ma at depths of <2 km. Laser ablation U-Pb ages within the thin section range from 20.37 Ma to 12.89 Ma and allow a detailed fault-filling chronology with the oldest calcite filling in the middle, younging outward with shearing between the oldest eight zones, all of which are finally crosscut by a perpendicular (E-W) vein. All nine calcite fillings have unique mechanical twinning strain results (n = 303 grains). Shortening strain magnitudes (−0.28% to −2.8%) and differential stresses (−339 bars to −415 bars) vary across the sample, as do the orientations of the shortening (ε1) and extension (ε3) axes with no evidence of any twinning strain overprint (low negative expected values). Overall, the tectonic compression and shortening is sub-horizontal and sub-parallel to the Gishron fault (∼N-S) and Dead Sea transform plate boundary. Most strikingly, the 7 m.y. period of vein growth correlates exactly with the timing of fault activity as evident within the 10-km-wide deformation zone in this evolving plate boundary (between 20 Ma and 13 Ma).


2004 ◽  
Vol 226 (3-4) ◽  
pp. 305-319 ◽  
Author(s):  
Richard J. Phillips ◽  
Randall R. Parrish ◽  
Michael P. Searle

2018 ◽  
Vol 11 (10) ◽  
pp. 5837-5864 ◽  
Author(s):  
Hiren Jethva ◽  
Omar Torres ◽  
Changwoo Ahn

Abstract. Aerosol–cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of adequate knowledge of the complex microphysical and radiative processes of the aerosol–cloud system. Situations when light-absorbing aerosols such as carbonaceous particles and windblown dust overlay low-level cloud decks are commonly found in several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over darker surfaces, an overlapping situation of the absorbing aerosols over the cloud can lead to a significant level of atmospheric absorption exerting a positive radiative forcing (warming) at the top of the atmosphere. We contribute to this topic by introducing a new global product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from the near-UV observations made by the Ozone Monitoring Instrument (OMI) onboard NASA's Aura platform. Physically based on an unambiguous “color ratio” effect in the near-UV caused by the aerosol absorption above the cloud, the OMACA (OMI above-cloud aerosols) algorithm simultaneously retrieves the optical depths of aerosols and clouds under a prescribed state of the atmosphere. The OMACA algorithm shares many similarities with the two-channel cloud-free OMAERUV algorithm, including the use of AIRS carbon monoxide for aerosol type identification, CALIOP-based aerosol layer height dataset, and an OMI-based surface albedo database. We present the algorithm architecture, inversion procedure, retrieval quality flags, initial validation results, and results from a 12-year long OMI record (2005–2016) including global climatology of the frequency of occurrence, ACAOD, and aerosol-corrected cloud optical depth. A comparative analysis of the OMACA-retrieved ACAOD, collocated with equivalent accurate measurements from the HSRL-2 lidar for the ORACLES Phase I operation (August–September 2016), revealed a good agreement (R = 0.77, RMSE = 0.10). The long-term OMACA record reveals several important regions of the world, where the carbonaceous aerosols from the seasonal biomass burning and mineral dust originated over the continents are found to overlie low-level cloud decks with moderate (0.3 < ACAOD < 0.5, away from the sources) to higher levels of ACAOD (> 0.8 in the proximity to the sources), including the southeastern Atlantic Ocean, southern Indian Ocean, Southeast Asia, the tropical Atlantic Ocean off the coast of western Africa, and northern Arabian sea. No significant long-term trend in the frequency of occurrence of aerosols above the clouds and ACAOD is noticed when OMI observations that are free from the “row anomaly” throughout the operation are considered. If not accounted for, the effects of aerosol absorption above the clouds introduce low bias in the retrieval of cloud optical depth with a profound impact on increasing ACAOD and cloud brightness. The OMACA aerosol product from OMI presented in this paper offers a crucial missing piece of information from the aerosol loading above cloud that will help us to quantify the radiative effects of clouds when overlaid with aerosols and their resultant impact on cloud properties and climate.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 139
Author(s):  
Giancarlo Molli ◽  
Isabelle Manighetti ◽  
Rick Bennett ◽  
Jacques Malavieille ◽  
Enrico Serpelloni ◽  
...  

Based on the review of the available stratigraphic, tectonic, morphological, geodetic, and seismological data, along with new structural observations, we present a reappraisal of the potential seismogenic faults and fault systems in the inner northwest Apennines, Italy, which was the site, one century ago, of the devastating Mw ~6.5, 1920 Fivizzano earthquake. Our updated fault catalog provides the fault locations, as well as the description of their architecture, large-scale segmentation, cumulative displacements, evidence for recent to present activity, and long-term slip rates. Our work documents that a dense network of active faults, and thus potential earthquake fault sources, exists in the region. We discuss the seismogenic potential of these faults, and propose a general tectonic scenario that might account for their development.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Nasim Mozafari ◽  
Çağlar Özkaymak ◽  
Dmitry Tikhomirov ◽  
Susan Ivy-Ochs ◽  
Vasily Alfimov ◽  
...  

This study reports on the cosmogenic 36Cl dating of two normal fault scarps in western Turkey, that of the Manastır and Mugırtepe faults, beyond existing historical records. These faults are elements of the western Manisa Fault Zone (MFZ) in the seismically active Gediz Graben. Our modeling revealed that the Manastır fault underwent at least two surface ruptures at 3.5 ± 0.9 ka and 2.0 ± 0.5 ka, with vertical displacements of 3.3 ± 0.5 m and 3.6 ± 0.5 m, respectively. An event at 6.5 ± 1.6 ka with a vertical displacement of 2.7 ± 0.4 m was reconstructed on the Mugırtepe fault. We attribute these earthquakes to the recurring MFZ ruptures, when also the investigated faults slipped. We calculated average slip rates of 1.9 and 0.3 mm yr−1 for the Manastır and Mugırtepe faults, respectively.


2018 ◽  
Author(s):  
Moshe Shay Ben-Haim ◽  
Zohar Eitan ◽  
Eran Chajut

Recent studies indicate that the ability to represent absolute pitch values in long-term memory (LTM), long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch" (AP), is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well established premises: (1) frequency of occurrence has an influence on the way we process stimuli; (2) in Western music, some pitches and musical keys are much more frequent than others. Based on these premises, we hypothesize that if absolute pitch values are indeed represented in LTM, pitch frequency of occurrence in music would significantly affect cognitive processes, in particular pitch learning and evaluation. Two experiments were designed to test this hypothesis in participants with no AP, most with little or no musical training. Experiment 1 demonstrated a faster response and a learning advantage for frequent pitches over infrequent pitches in an identification task. In Experiment 2 participants evaluated infrequent pitches as more pleasing than frequent pitches when presented in isolation. These results suggest that absolute pitch representation in memory may play a substantial, hitherto unacknowledged role in auditory (and specifically musical) cognition.


2020 ◽  
Author(s):  
Zachery M. Lifton

Field photographs, stratigraphic columns, displacement modeling results, depth profile modeling results, and slip rate modeling results.


Sign in / Sign up

Export Citation Format

Share Document