scholarly journals Monoamine oxidase enzymes and oxidative stress in the rat optic nerve: age-related changes

Author(s):  
Marcella Nebbioso ◽  
Antonia Pascarella ◽  
Carlo Cavallotti ◽  
Nicola Pescosolido
2011 ◽  
Vol 50 (9) ◽  
pp. 1053-1064 ◽  
Author(s):  
Julio J. Ochoa ◽  
Reinald Pamplona ◽  
M. Carmen Ramirez-Tortosa ◽  
Sergio Granados-Principal ◽  
Patricia Perez-Lopez ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3497 ◽  
Author(s):  
Joung-Sun Park ◽  
Yung-Jin Kim

Age-related changes in tissue-resident adult stem cells may be closely linked to tissue aging and age-related diseases, such as cancer. β-Hydroxybutyrate is emerging as an important molecule for exhibiting the anti-aging effects of caloric restriction and fasting, which are generally considered to be beneficial for stem cell maintenance and tissue regeneration. The effects of β-hydroxybutyrate on adult stem cells remain largely unknown. Therefore, this study was undertaken to investigate whether β-hydroxybutyrate supplementation exerts beneficial effects on age-related changes in intestinal stem cells that were derived from the Drosophila midgut. Our results indicate that β-hydroxybutyrate inhibits age- and oxidative stress-induced changes in midgut intestinal stem cells, including centrosome amplification (a hallmark of cancers), hyperproliferation, and DNA damage accumulation. Additionally, β-hydroxybutyrate inhibits age- and oxidative stress-induced heterochromatin instability in enterocytes, an intestinal stem cells niche cells. Our results suggest that β-hydroxybutyrate exerts both intrinsic as well as extrinsic influence in order to maintain stem cell homeostasis.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
YongPing Li ◽  
XiaoChun Wei ◽  
JingMing Zhou ◽  
Lei Wei

Osteoarthritis (OA) is closely associated with aging, but its underlying mechanism is unclear. Recent publications were reviewed to elucidate the connection between aging and OA. With increasing OA incidence, more senior people are facing heavy financial and social burdens. Age-related OA pathogenesis is not well understood. Recently, it has been realized that age-related changes in other tissues besides articular cartilage may also contribute to OA development. Many factors including senescence-related secretory phenotypes, chondrocytes’ low reactivity to growth factors, mitochondrial dysfunction and oxidative stress, and abnormal accumulation of advanced glycation end products (AGEs) may all play key roles in the pathogenesis of age-related OA. Lately, epigenetic regulation of gene expression was recognized for its impact on age-related OA pathogenesis. Up to now, few studies have been reported about the role of miRNA and long-noncoding RNA (lncRNA) in age-related OA. Research focusing on this area may provide valuable insights into OA pathogenesis. OA-induced financial and social burdens have become an increasingly severe threat to older population. Age-related changes in noncartilage tissue should be incorporated in the understanding of OA development. Growing attention on oxidative stress and epigenetics will provide more important clues for the better understanding of the age-related OA.


Sign in / Sign up

Export Citation Format

Share Document