amine content
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 22)

H-INDEX

35
(FIVE YEARS 2)

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Nevijo Zdolec ◽  
Tanja Bogdanović ◽  
Krešimir Severin ◽  
Vesna Dobranić ◽  
Snježana Kazazić ◽  
...  

Biogenic amines (BAs) are considered a potential microbiological toxicological hazard in aged cheese. Risk mitigation strategies include good hygiene practice measures, thermal treatment of milk and the use of competitive dairy cultures. The aim of this study was to evaluate the amount of BAs—tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine—in the core and rind of cheeses ripened by bacteria (n = 61) and by mold cultures (n = 8). The microbial communities were counted, and the dominant lactic acid bacteria (LAB) were identified, corresponding to the BA concentrations. The total BA content was highest in the core of semi-hard cheeses (353.98 mg/kg), followed by mold cheeses (248.99 mg/kg) and lowest in hard cheeses (157.38 mg/kg). The highest number of BAs was present in the rind of cheeses with mold (240.52 mg/kg), followed by semi-hard (174.99 mg/kg) and hard cheeses (107.21 mg/kg). Tyramine was the most abundant BA, represented by 75.4% in mold cheeses, 41.3% in hard cheese and 35% of total BAs in semi-hard cheeses. Histamine was present above the defined European maximum level (ML) of 100 mg/kg in only two semi-hard and three hard cheeses. High amount of BAs (above 600 mg/kg) in cheeses, mainly tyramine, were associated with the presence of Enterococcus durans, while negligible BA concentrations were found in cheeses ripened with Lacticaseibacillus rhamnosus, Lactococcus lactis or Lacticaseibacillus paracasei cultures. This study has shown that retailed cheese varieties produced with commercial bacterial or mold cultures have acceptable levels of biogenic amines with respect to consumers.


Author(s):  
Zeng Jihao ◽  
Wu Jinhong ◽  
Chen Huiyun ◽  
Ni Sui

In this paper, the application of biological methods to reduce biogenic amine content in foods was introduced. Biogenic amine oxidase, a special protein that can degrade biogenic amine into acetaldehyde, hydrogen peroxide and ammonia, has been introduced in this paper, and two major amine oxidases and their degradation effects on different biogenic amines were briefly reviewed. In addition, various microorganisms that could produce amine oxidase were summarized in this paper, and their application in the fermentation was shown. This short review summarizes the important biological methods currently used to degrade biogenic amines and provides new theoretical guidance for removing or reducing the biogenic amines in foods.


2021 ◽  
Author(s):  
MICHAEL N. OLAYA ◽  
SAGAR PATIL ◽  
GREGORY M. ODEGARD ◽  
MARIANNA MAIARÙ

A novel approach for characterization of thermosetting epoxy resins as a function of the degree of cure is presented. Density, cure kinetics, tensile strength, and Young’s modulus are experimentally characterized across four mixing ratios of DGEBF/DETDA epoxy. Dynamic differential scanning calorimetry (DSC) is used to characterize parameters for a Prout-Thompkins kinetic model unique to each mixing ratio case through a data fitting procedure. Tensile strength and Young’s modulus are then characterized using stress-strain data extracted from quasi-static, uniaxial tension tests at room temperature. Strains are measured with the 2-D digital image correlation (DIC) optical strain measurement technique. Strength tends to increase as amine content use in the formulation increases. The converse trend is observed for Young’s modulus. Density measurements also reveal an inverse relationship with amine content.


LWT ◽  
2021 ◽  
pp. 112397
Author(s):  
Richard Adámek ◽  
Vendula Pachlová ◽  
Richardos Nikolaos Salek ◽  
Irena Němečková ◽  
František Buňka ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1003
Author(s):  
Zhuning Wu ◽  
Stefanie H. Korntner ◽  
Jos Olijve ◽  
Anne Maria Mullen ◽  
Dimitios I. Zeugolis

In the medical device sector, bloom index and residual endotoxins should be controlled, as they are crucial regulators of the device’s physicochemical and biological properties. It is also imperative to identify a suitable crosslinking method to increase mechanical integrity, without jeopardising cellular functions of gelatin-based devices. Herein, gelatin preparations with variable bloom index and endotoxin levels were used to fabricate non-crosslinked and polyethylene glycol succinimidyl glutarate crosslinked gelatin scaffolds, the physicochemical and biological properties of which were subsequently assessed. Gelatin preparations with low bloom index resulted in hydrogels with significantly (p < 0.05) lower compression stress, elastic modulus and resistance to enzymatic degradation, and significantly higher (p < 0.05) free amine content than gelatin preparations with high bloom index. Gelatin preparations with high endotoxin levels resulted in films that induced significantly (p < 0.05) higher macrophage clusters than gelatin preparations with low endotoxin level. Our data suggest that the bloom index modulates the physicochemical properties, and the endotoxin content regulates the biological response of gelatin biomaterials. Although polyethylene glycol succinimidyl glutarate crosslinking significantly (p < 0.05) increased compression stress, elastic modulus and resistance to enzymatic degradation, and significantly (p < 0.05) decreased free amine content, at the concentration used, it did not provide sufficient structural integrity to support cell culture. Therefore, the quest for the optimal gelatin crosslinker continues.


Author(s):  
Veronika V. Danilina ◽  
◽  
Dmitry I. Chernov ◽  
Dmitry G. Cherkasov ◽  
Konstantin K. Il’in ◽  
...  

A comparative analysis of the results of our polythermal study of the ternary systems sodium (potassium, cesium) nitrate – water – triethylamine has been carried out to estimate the efficiency of the use of triethylamine in the extractive crystallization of alkali metal nitrates from water–salt solutions containing 43.0, 44.0, 45.0, 46.0, and 47.0 wt. % sodium nitrate in the range of 10.0–25.0°C, 20.0, 21.0, and 22.0 wt.% potassium nitrate and 18.0, 19.0, 20.0 and 21.0 wt. % cesium nitrate in the range of 20.0–25.0°C. The dependences of the yield of these salts on the amount of triethylamine added and temperature have been found. It has been established that the maximum yield of sodium nitrate (79.4%) is observed for the aqueous solution with 47 wt.% salt upon the introduction of 90 wt.% triethylamine at 25.0° C. The maximum yield in the systems potassium (cesium) nitrate – water – triethylamine was 68.9% (22 wt. % potassium nitrate solution) and 66.2% (21 wt. % cesium nitrate solution) at 20.0° C and 90 wt. % amine content.


2021 ◽  
Vol 44 (1) ◽  
pp. 11-15
Author(s):  
Muhammad Ahsan Asghar ◽  
Zsuzsa Mednyánszky ◽  
Livia Simon-Sarkadi ◽  
Gábor Kocsy

AbstractThe appropriate timing of the accumulation of biogenic amines is very important during cold acclimation due to their direct protective role and their involvement in the signaling processes. The time course of changes in the amount of six of them was compared during a 3-week acclimation period in a freezing tolerant and a sensitive genotype of rye, barley and wheat. In general, a greater and faster cold-induced increase in biogenic amine content was observed in the tolerant genotypes of the three species compared to the sensitive ones. This change was very quick in the case of putrescine, spermidine and cadaverine reaching a maximum after three days in the freezing-tolerant rye genotype. There was a continuous increase in the spermine and tyramine contents during the whole acclimation period in the tolerant wheat genotype while nearly constant levels were detected in the sensitive one. The amount of these two amines exhibited a positive correlation with the level of freezing tolerance in each of the five sampling points. Based on the correlations, a coordinated adjustment of the level of the six studied biogenic amines occurred during the acclimation period which could contribute to the efficient adaptation to cold. In addition, the earlier induction of the biogenic amine accumulation in the freezing tolerant genotypes may contribute to their better cold acclimation.


2021 ◽  
Author(s):  
Athanasios Koutsianos ◽  
Louise B. Hamdy ◽  
Chun-Jae Yoo ◽  
Jason J. Lee ◽  
Marco Taddei ◽  
...  

Polyamine-based carbon dioxide sorbents suffer from a seesaw relationship between amine content and amine efficiency. High polyamine loadings equate to increased amine contents, but often at the expense of amine efficiency. Carbon dioxide mass transport in compact polymers is severely limited, especially at ambient temperature. High polymer contents curtail diffusion pathways, hindering CO2 from reaching and reacting with the numerous amine functions. Here, we overcome this issue using poly(allylamine) (PAA) grafted with short fluoroalkyl chains and then cross-linked with C60. As experimentally evidenced by positron annihilation lifetime spectroscopy, the incorporation of fluoroalkyl chains generates free volume elements that act as additional diffusion pathways within the material. The inclusion of void volume in fluoroalkyl-functionalized PAA sorbents results in radically increased CO2 uptakes and amine efficiencies in diluted gas streams at room temperature, including simulated air. We speculate that the hydrophobic fluorinated functions interfere with the strong amine hydrogen bonding network disrupting and consequently altering the packing and conformation of the polymer chains. The evidence presented here is a blueprint for the development of more efficient amine-based CO2 sorbents


2021 ◽  
Author(s):  
Athanasios Koutsianos ◽  
Louise B. Hamdy ◽  
Chun-Jae Yoo ◽  
Jason J. Lee ◽  
Marco Taddei ◽  
...  

Polyamine-based carbon dioxide sorbents suffer from a seesaw relationship between amine content and amine efficiency. High polyamine loadings equate to increased amine contents, but often at the expense of amine efficiency. Carbon dioxide mass transport in compact polymers is severely limited, especially at ambient temperature. High polymer contents curtail diffusion pathways, hindering CO2 from reaching and reacting with the numerous amine functions. Here, we overcome this issue using poly(allylamine) (PAA) grafted with short fluoroalkyl chains and then cross-linked with C60. As experimentally evidenced by positron annihilation lifetime spectroscopy, the incorporation of fluoroalkyl chains generates free volume elements that act as additional diffusion pathways within the material. The inclusion of void volume in fluoroalkyl-functionalized PAA sorbents results in radically increased CO2 uptakes and amine efficiencies in diluted gas streams at room temperature, including simulated air. We speculate that the hydrophobic fluorinated functions interfere with the strong amine hydrogen bonding network disrupting and consequently altering the packing and conformation of the polymer chains. The evidence presented here is a blueprint for the development of more efficient amine-based CO2 sorbents


Sign in / Sign up

Export Citation Format

Share Document