Growth and Metabolism of L-malic Acid by Lactobacillus plantarum CECT 220 in a Defined Medium

1992 ◽  
Vol 57 (3) ◽  
pp. 778-780 ◽  
Author(s):  
M.ARÍA JOSÉ GARCERCÍ GARCERÁ ◽  
M.ARCELA CAMPOS ◽  
M.ANUEL ZÚÑIGA ◽  
F.EDERICO URUBURU
2014 ◽  
Vol 80 (7) ◽  
pp. 2206-2215 ◽  
Author(s):  
P. Filannino ◽  
G. Cardinali ◽  
C. G. Rizzello ◽  
S. Buchin ◽  
M. De Angelis ◽  
...  

ABSTRACTStrains ofLactobacillus plantarumwere grown and stored in cherry (ChJ), pineapple (PJ), carrot (CJ), and tomato (TJ) juices to mimic the chemical composition of the respective matrices. Wheat flour hydrolysate (WFH), whey milk (W), and MRS broth were also used as representatives of other ecosystems. The growth rates and cell densities ofL. plantarumstrains during fermentation (24 h at 30°C) and storage (21 days at 4°C) differed only in part, being mainly influenced by the matrix. ChJ and PJ were the most stressful juices for growth and survival. Overall, the growth in juices was negatively correlated with the initial concentration of malic acid and carbohydrates. The consumption of malic acid was noticeable for all juices, but mainly during fermentation and storage of ChJ. Decreases of branched-chain amino acids (BCAA)—with the concomitant increase of their respective branched alcohols—and His and increases of Glu and gamma-aminobutyric acid (GABA) were the main traits of the catabolism of free amino acids (FAA), which were mainly evident under less acidic conditions (CJ and TJ). The increase of Tyr was found only during storage of ChJ. Some aldehydes (e.g., 3-methyl-butanal) were reduced to the corresponding alcohols (e.g., 3-methyl-1-butanol). After both fermentation and storage, acetic acid increased in all fermented juices, which implied the activation of the acetate kinase route. Diacetyl was the ketone found at the highest level, and butyric acid increased in almost all fermented juices. Data were processed through multidimensional statistical analyses. Except for CJ, the juices (mainly ChJ) seemed to induce specific metabolic traits, which differed in part among the strains. This study provided more in-depth knowledge on the metabolic mechanisms of growth and maintenance ofL. plantarumin vegetable and fruit habitats, which also provided helpful information to select the most suitable starters for fermentation of targeted matrices.


2003 ◽  
Vol 63 (2) ◽  
pp. 207-211 ◽  
Author(s):  
F. V. Passos ◽  
H. P. Fleming ◽  
H. M. Hassan ◽  
R. F. McFeeters

2018 ◽  
Vol 12 (1) ◽  
pp. 282-287
Author(s):  
Moncalvo A. ◽  
Dordoni R. ◽  
Silva A. ◽  
Fumi M.D. ◽  
Di Piazza S. ◽  
...  

Background: Ochratoxin A is a nephrotoxin which may occur in wines characterised by higher pH than the average. In the last decades the mechanisms responsible for ochratoxin A reduction by lactic acid bacteria have been investigated and identified as mainly cell walls adsorption and / or enzymatic conversion to ochratoxin-α, a non-toxic metabolite. Since lactic acid bacteria are involved in the malolactic fermentation during the wine-making process, selected starter cultures could be exploited to guarantee safe ochratoxin A level in wines also from contaminated grapes. A lactic acid bacteria strain (Lactobacillus plantarum V22) was previously selected for its ability of both degrading ochratoxin A and carrying out malolactic fermentation at high pH. Objective: This study was aimed at assessing if the selected L. plantarum strain, can reduce ochratoxin A because it can use it as a carbon source. Methods: L. plantarum V22 was grown in the presence of ochratoxin A in two different synthetic substrates, with or without malic acid, monitoring the reduction of ochratoxin A and the presence of ochratoxin α as an indicator for a toxin enzymatic hydrolysis. The presence of residual not hydrolysed ochratoxin A bound to the bacteria cell walls was also evaluated to quantify the ochratoxin A removal due to simple adsorption. Result: A significant reduction of 19.5 ± 2.0% in ochratoxin A concentration was observed only in the presence of malic acid. The quantified fraction of ochratoxin A adsorbed on cell walls was irrelevant and the metabolite ochratoxin α could not be detected. Conclusion: There is a possibility that L. plantarum V22 can degrade ochratoxin A through a not yet identified metabolic pathway.


2013 ◽  
Vol 79 (8) ◽  
pp. 2657-2669 ◽  
Author(s):  
Maria Calasso ◽  
Raffaella Di Cagno ◽  
Maria De Angelis ◽  
Daniela Campanella ◽  
Fabio Minervini ◽  
...  

ABSTRACTThis study aimed at investigating the extracellular and cell wall-associated proteins (exoproteome) ofLactobacillus plantarumDC400 when cultivated on modified chemically defined medium (CDM) supplemented with the chemically synthesized pheromone plantaricin A (PlnA) or cocultured withL. plantarumDPPMA20 orLactobacillus sanfranciscensisDPPMA174. Compared to monoculture, two-dimensional gel electrophoresis (2-DE) analysis showed that the exoproteome ofL. plantarumDC400 was affected by PlnA and cocultivation with strains DPPMA20 and, especially, DPPMA174. The highest similarity of the 2-DE maps was found between DC400 cells cultivated in monoculture and in coculture with strain DPPMA20. Almost all extracellular proteins (22 spots) and cell wall-associated proteins (40 spots) which showed decreased or increased levels of synthesis during growth in CDM supplemented with PlnA and/or in coculture with strain DPPMA20 or DPPMA174 were identified. On the basis of the sequences in the Kyoto Encyclopedia of Genes and Genomes database, changes to the exoproteome concerned proteins involved in quorum sensing (QS), the transport system, stress response, carbohydrate metabolism and glycolysis, oxidation/reduction processes, the proteolytic system, amino acid metabolism, cell wall and catabolic processes, and cell shape, growth, and division. Cultivation with PlnA and cocultivation with strains DPPMA20 and, especially, DPMMA174 markedly increased the capacity ofL. plantarumDC400 to form biofilms, to adhere to human Caco-2 cells, and to prevent the adhesion of potential intestinal pathogens. These phenotypic traits were in part related to oversynthesized moonlighting proteins (e.g., DnaK and GroEL, pyruvate kinase, enolase, and glyceraldehyde-3-phosphate dehydrogenase) in response to QS mechanisms and interaction withL. plantarumDPPMA20 and, especially,L. sanfranciscensisDPPMA174.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 797 ◽  
Author(s):  
Gianfranco Pannella ◽  
Silvia Jane Lombardi ◽  
Francesca Coppola ◽  
Franca Vergalito ◽  
Massimo Iorizzo ◽  
...  

Biofilm life-style of Lactobacillus plantarum (L. plantarum) strains was evaluated in vitro as a new and suitable biotechnological strategy to assure L-malic acid conversion in wine stress conditions. Sixty-eight L. plantarum strains isolated from diverse sources were assessed for their ability to form biofilm in acid (pH 3.5 or 3.2) or in ethanol (12% or 14%) stress conditions. The effect of incubation times (24 and 72 h) on the biofilm formation was evaluated. The study highlighted that, regardless of isolation source and stress conditions, the ability to form biofilm was strain-dependent. Specifically, two clusters, formed by high and low biofilm producer strains, were identified. Among high producer strains, L. plantarum Lpls22 was chosen as the highest producer strain and cultivated in planktonic form or in biofilm using oak supports. Model wines at 12% of ethanol and pH 3.5 or 3.2 were used to assess planktonic and biofilm cells survival and to evaluate the effect of biofilm on L-malic acid conversion. For cells in planktonic form, a strong survival decay was detected. In contrast, cells in biofilm life-style showed high resistance, assuring a prompt and complete L-malic acid conversion.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mao Li ◽  
Lidong Zhang ◽  
Qing Zhang ◽  
Xuejuan Zi ◽  
Renlong Lv ◽  
...  

The microbiota and fermentation quality of cassava foliage (CF) ensiled in the absence of additive (CK), or the presence of citric acid (CA), malic acid (MA), and their combination with a Lactobacillus plantarum strain (CAL and MAL)were investigated. These additives reduced (P < 0.05) the pH, butyric acid, and ammonia-N contents but increased (P < 0.05) the lactic acid content, and CAL and MAL showed similar remarkable effects. Paenibacillus (mean, 27.81%) and Bacillus (mean, 16.04%) were the predominant strains in CF silage. The addition of CA or MAL increased the abundance of Paenibacillus (25.81–52.28% and 47.97%, respectively), and the addition of MA increased the abundance of Bacillus (15.76–32.48%) compared with the CK group. Moreover, CAL and MAL increased the abundances of the potentially desirable bacteria Cellulosimicrobium (CAL 0–12.73%), Hyphomicrobium (0–7.90% and 8.94%), and Oceanobacillus (0–8.37% and 3.08%) compared with the CK group. These findings suggested that CA and MA could enhance the silage quality of CF, and their combinations with Lactobacillus plantarum were more effective.


2017 ◽  
Vol 8 ◽  
Author(s):  
Mariantonietta Succi ◽  
Gianfranco Pannella ◽  
Patrizio Tremonte ◽  
Luca Tipaldi ◽  
Raffaele Coppola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document