Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK1-6 isolated from Kimchi on differentiating adipocyte

2012 ◽  
Vol 113 (3) ◽  
pp. 652-658 ◽  
Author(s):  
Y.J. Moon ◽  
J.R. Soh ◽  
J.J. Yu ◽  
H.S. Sohn ◽  
Y.S. Cha ◽  
...  
2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ioana Hristov ◽  
Veronica Mocanu ◽  
Florin Zugun-Eloae ◽  
Luminita Labusca ◽  
Iustina Cretu-Silivestru ◽  
...  

2015 ◽  
Vol 308 (12) ◽  
pp. E1140-E1148 ◽  
Author(s):  
Yang Zhang ◽  
Kun Ling Ma ◽  
Jing Liu ◽  
Yu Wu ◽  
Ze Bo Hu ◽  
...  

Dyslipidemia plays crucial roles in the progression of diabetic nephropathy (DN). This study investigated the effects of high glucose on lipid accumulation in podocytes and explored its underlying mechanisms. Male db/m and db/db mice were fed a normal chow diet for 8 wk. Immortalised mouse podocytes were treated with or without high glucose for 24 h. The changes to the morphology and ultramicrostructures of the kidneys in mice were examined using pathological staining and electron microscopy. Intracellular lipid accumulation was evaluated by Oil Red O staining and a free cholesterol quantitative assay. The expressions of the molecules involved in low-density lipoprotein receptor (LDLr) pathway and podocyte injury were examined using immunofluorescent staining, real-time PCR, and Western blot. There were increased levels of plasma lipid, serum creatinine, and proteinuria in db/db mice compared with db/m mice. Moreover, there was significant mesangial matrix expansion, basement membrane thickening, podocyte foot process effacement, and phenotypic alteration in the db/db group. Additionally, lipid accumulation in the kidneys of db/db mice was increased due to increased protein expressions of LDLr, sterol regulatory element-binding protein (SREBP) cleavage-activating protein, and SREBP-2. These effects were further confirmed by in vitro studies. Interestingly, the treatment with LDLr siRNA inhibited lipid accumulation in podocytes and decreased the protein expression of molecules associated with phenotypic alteration in podocytes. High glucose disrupted LDLr feedback regulation in podocytes, which may cause intracellular lipid accumulation and alteration of podocyte phenotype, thereby accelerating DN progression.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Eun-Bin Kwon ◽  
Myung-Ji Kang ◽  
Soo-Yeon Kim ◽  
Yong-Moon Lee ◽  
Mi-Kyeong Lee ◽  
...  

Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF-α, suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells.


Sign in / Sign up

Export Citation Format

Share Document