Characterization of Rhizobium phaseoli Sym plasmid regions involved in nodule morphogenesis and host-range specificity

1989 ◽  
Vol 3 (7) ◽  
pp. 879-889 ◽  
Author(s):  
M. A. Cevallos ◽  
M. Vázquez ◽  
A. Dávalos ◽  
G. Espín ◽  
J. Sepúlveda ◽  
...  
Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 901-904 ◽  
Author(s):  
Claudia Goyer ◽  
Carole Beaulieu

Ten Streptomyces isolates from common scab lesions on carrots (Daucus carota) were characterized. Morphological and physiological characterization of the carrot isolates established that they were closely related to S. scabies. DNA-DNA hybridization studies were carried out between DNA from the carrot isolates and DNA from two potato strains belonging to the two genetic clusters of S. scabies. Most of the carrot isolates exhibited a high level of DNA relatedness (average of 90%) to strain EF-54, which belongs to genetic cluster 1 of S. scabies. Three carrot isolates could not be included in either S. scabies genetic cluster 1 or 2. The pathogenicity of six S. scabies isolates from potato or carrot, two isolates of S. caviscabies, and one isolate of S. acidiscabies was determined on potato, carrot, radish, beet, turnip, and parsnip. All S. scabies isolates were pathogenic on carrot and radish, but pathogenicity on beet, parsnip, turnip, and potato was variable. Even though S. acidiscabies and S. caviscabies until now have been isolated only from potato, we demonstrated that isolates of these species also could infect other crops, such as radish, carrot, parsnip, and turnip.


1995 ◽  
Vol 177 (12) ◽  
pp. 3443-3450 ◽  
Author(s):  
E Mellado ◽  
J A Asturias ◽  
J J Nieto ◽  
K N Timmis ◽  
A Ventosa

2021 ◽  
Author(s):  
Wenlin Ren ◽  
Xiaohui Ju ◽  
Mingli Gong ◽  
Jun Lan ◽  
Yanying Yu ◽  
...  

ABSTRACTRecently, highly transmissible SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta) and B.1.618 were identified in India with mutations within the spike proteins. The spike protein of Kappa contains four mutations E154K, L452R, E484Q and P681R, and Delta contains L452R, T478K and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have altered in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta or B.1.618 spike uses human ACE2 with no or slightly increased efficiency, while gains a significantly increased binding affinity with mouse, marmoset and koala ACE2 orthologs, which exhibits limited binding with WT spike. Furthermore, the P618R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta and B.1.618 exhibits a reduced sensitivity to neutralization by convalescent sera owning to the mutation of E484Q, T478K, Δ145-146 or E484K, but remains sensitive to entry inhibitors-ACE2-lg decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants and expanded host range. Furthermore, our result also highlighted that ACE2-lg could be developed as broad-spectrum antiviral strategy against SARS-CoV-2 variants.


Author(s):  
Isabel Webb ◽  
Jiabao Xu ◽  
Carmen Sanchez-Cañizares ◽  
Ramakrishnan Karunakaran ◽  
Vinoy Ramachandran ◽  
...  

Symbiosis between Rhizobium leguminosarum and Pisum sativum requires tight control of redox balance in order to maintain respiration under the microaerobic conditions required for nitrogenase, whilst still producing the eight electrons and sixteen molecules of ATP needed for nitrogen fixation. FixABCX, electron transfer flavoproteins essential for nitrogen fixation, are encoded on the Sym plasmid (pRL10), immediately upstream of nifA, which encodes the general transcriptional regulator of nitrogen fixation. There is a symbiotically-regulated NifA-dependent promoter upstream of fixA (PnifA1), as well as an additional basal constitutive promoter driving background expression of nifA (PnifA2). These were confirmed by 5’-end mapping of transcription start sites using differential (d) RNA-seq. Complementation of polar fixAB and fixX mutants (Fix- strains) confirmed expression of nifA from PnifA1 in symbiosis. Electron microscopy combined with single-cell Raman microspectroscopy characterization of fixAB mutants revealed previously unknown heterogeneity in bacteroid morphology within a single nodule. Two morphotypes of mutant fixAB bacteroids were observed. One was larger than wild-type bacteroids and contained high levels of polyhydroxy-3-butyrate, a complex energy/reductant storage product. A second bacteroid phenotype was morphologically and compositionally different and resembled wild-type infection thread cells. From these two characteristic fixAB mutant bacteroid morphotypes, inferences can be drawn on the metabolism of wild-type nitrogen-fixing bacteroids.


1980 ◽  
pp. 351-359 ◽  
Author(s):  
Ginette Tardif ◽  
Robert B. Grant
Keyword(s):  

Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 731
Author(s):  
Anahí G. Díaz ◽  
Paula G. Ragone ◽  
Fanny Rusman ◽  
Noelia Floridia-Yapur ◽  
Rubén M. Barquez ◽  
...  

Trypanosomes are a group of parasitic flagellates with medical and veterinary importance. Despite many species having been described in this genus, little is known about many of them. Here, we report a genetic and morphological characterization of trypanosomatids isolated from wild mammals from the Argentine Chaco region. Parasites were morphologically and ultrastructurally characterized by light microscopy and transmission electron microscopy. Additionally, 18s rRNA and gGAPDH genes were sequenced and analyzed using maximum likelihood and Bayesian inference. Morphological characterization showed clear characteristics associated with the Trypanosoma genus. The genetic characterization demonstrates that the studied isolates have identical sequences and a pairwise identity of 99% with Trypanosoma lainsoni, which belongs to the clade of lizards and snakes/rodents and marsupials. To date, this species had only been found in the Amazon region. Our finding represents the second report of T. lainsoni and the first record for the Chaco region. Furthermore, we ultrastructurally described for the first time the species. Finally, the host range of T. lainsoni was expanded (Leopardus geoffroyi, Carenivora, Felidae; and Calomys sp., Rodentia, Cricetidae), showing a wide host range for this species.


1980 ◽  
Vol 26 (9) ◽  
pp. 1072-1089 ◽  
Author(s):  
Dwight Baker ◽  
William Newcomb ◽  
John G. Torrey

The actinomycete, Frankia sp. EuI1, isolated from root nodules of Elaeagnus umbellata is an infective endophyte but which lacks the ability to form an effective nitrogen-fixing symbiosis with its host. This ineffective organism can be distinguished easily from other frankiae, in vitro, on the basis of size, morphology, and the elaboration of a diffusible pigment. Cross-inoculation studies indicated that the host range of this symbiont is narrow and probably restricted to the Elaeagnaceae. In all cases of nodulation the symbiosis never developed nitrogenase activity and the microsymbiont never produced endophytic vesicles within the infected host cells. Sporangia were produced in vivo and in vitro so the morphogenetic block is apparently restricted to vesicle formation.


Sign in / Sign up

Export Citation Format

Share Document