Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought

1994 ◽  
Vol 5 (3) ◽  
pp. 397-405 ◽  
Author(s):  
Ron Mittler ◽  
Barbara A. Zilinskas
2011 ◽  
Vol 62 (8) ◽  
pp. 2599-2613 ◽  
Author(s):  
M. Faize ◽  
L. Burgos ◽  
L. Faize ◽  
A. Piqueras ◽  
E. Nicolas ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 398
Author(s):  
Muneera D. F. AlKahtani ◽  
Yaser M. Hafez ◽  
Kotb Attia ◽  
Emadeldeen Rashwan ◽  
Latifa Al Husnain ◽  
...  

Drought stress deleteriously affects growth, development and productivity in plants. So, we examined the silicon effect (2 mmol) and proline (10 mmol) individually or the combination (Si + proline) in alleviating the harmful effect of drought on total phenolic compounds, reactive oxygen species (ROS), chlorophyll concentration and antioxidant enzymes as well as yield parameters of drought-stressed sugar beet plants during 2018/2019 and 2019/2020 seasons. Our findings indicated that the root diameter and length (cm), root and shoot fresh weights (g plant−1) as well as root and sugar yield significantly decreased in sugar beet plants under drought. Relative water content (RWC), nitrogen (N), phosphorus (P) and potassium (K) contents and chlorophyll (Chl) concentration considerably reduced in stressed sugar beet plants that compared with control in both seasons. Nonetheless, lipid peroxidation (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide (O2●−) considerably elevated as signals of drought. Drought-stressed sugar beet plants showed an increase in proline accumulation, total phenolic compounds and up-regulation of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) activity to mitigate drought effects. Si and proline individually or the combination Si + proline considerably increased root and sugar yield, sucrose%, Chl concentration and RWC, MDA and EL were remarkably reduced. The treatments led to adjust proline and total phenolic compounds as well as CAT and SOD activity in stressed sugar beet plants. We concluded that application of Si + proline under drought stress led to improve the resistance of sugar beet by regulating of proline, antioxidant enzymes, phenolic compounds and improving RWC, Chl concentration and Nitrogen, Phosphorus and Potassium (NPK) contents as well as yield parameters.


2015 ◽  
Vol 723 ◽  
pp. 705-710
Author(s):  
Wei Shun Cheng ◽  
Dan Li Zeng ◽  
Na Zhang ◽  
Hong Xia Zeng ◽  
Xian Feng Shi ◽  
...  

The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L), Sulfacetamide (25, 50 and 100 mg/L) and Sulfasalazine (25,50 and 100 mg/L). Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h). Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in watermelon, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing watermelon plants tolerance to drought as was ABA.


1998 ◽  
Vol 353 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Kazuya Yoshimura ◽  
Takahiro Ishikawa ◽  
Yoshihiro Nakamura ◽  
Masahiro Tamoi ◽  
Toru Takeda ◽  
...  

2019 ◽  
Vol 135 ◽  
pp. 30-40 ◽  
Author(s):  
Xuxu Wang ◽  
Yangang Gao ◽  
Qingjie Wang ◽  
Min Chen ◽  
Xinlin Ye ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jie-Xia Liu ◽  
Kai Feng ◽  
Ao-Qi Duan ◽  
Hui Li ◽  
Qing-Qing Yang ◽  
...  

Abstract Background Celery is a widely cultivated vegetable abundant in ascorbate (AsA), a natural plant antioxidant capable of scavenging free radicals generated by abiotic stress in plants. Ascorbate peroxidase (APX) is a plant antioxidant enzyme that is important in the synthesis of AsA and scavenging of excess hydrogen peroxide. However, the characteristics and functions of APX in celery remain unclear to date. Results In this study, a gene encoding APX was cloned from celery and named AgAPX1. The transcription level of the AgAPX1 gene was significantly upregulated under drought stress. AgAPX1 was expressed in Escherichia coli BL21 (DE3) and purified. The predicted molecular mass of rAgAPX1 was 33.16 kDa, which was verified by SDS-PAGE assay. The optimum pH and temperature for rAgAPX1 were 7.0 and 55 °C, respectively. Transgenic Arabidopsis hosting the AgAPX1 gene showed elevated AsA content, antioxidant capacity and drought resistance. Less decrease in net photosynthetic rate, chlorophyll content, and relative water content contributed to the high survival rate of transgenic Arabidopsis lines after drought. Conclusions The characteristics of APX in celery were different from that in other species. The enhanced drought resistance of overexpressing AgAPX1 in Arabidopsis may be achieved by increasing the accumulation of AsA, enhancing the activities of various antioxidant enzymes, and promoting stomatal closure. Our work provides new evidence to understand APX and its response mechanisms to drought stress in celery.


Sign in / Sign up

Export Citation Format

Share Document